Review article| Volume 1, ISSUE 4, P248-255, August 2007

Revisiting niacin: reviewing the evidence


      Atherogenic dyslipidemia, defined by a cluster of lipoprotein abnormalities, including low high−density lipoprotein cholesterol (HDL-C) and elevated serum triglycerides, represents an important potential target for reducing cardiovascular risk. This has paved the way for revisiting niacin as a therapy in preventing progression of atherosclerosis. Niacin remains the safest and most effective agent for raising HDL-C and is a logical choice to target atherogenic dyslipidemia. While the clinical efficacy of niacin has been known for many years, it is only with development of newer formulations, which have lower side-effect profiles and improved compliance, that the potential for this agent been fully realized. In this review, we will examine some of the reasons that niacin can have important implications for reducing progression of atherosclerosis. We will first examine the different formulations and their variability, not only in side-effect profiles, but also in clinical efficacy. We will then consider the theoretical evidence for the benefit of HDL-raising produced by niacin on atherosclerotic progression. Finally, we will review clinical data suggesting the benefit of niacin on cardiovascular outcomes.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Tenenbaum A.
        • Fishman E.Z.
        • Motro M.
        • Yehuda Adler
        Atherogenic dyslipidemia in the metabolic syndrome and type 2 diabetes: therapeutic options beyond statins.
        Cardiovasc Diabetol. 2006; 5: 20
        • Castelli W.P.
        • Garrison R.J.
        • Wilson P.W.F.
        • Abbott R.D.
        • Kalousdian S.
        • Kannel W.B.
        Incidence of coronary heart disease and lipoprotein cholesterol levels: the Framingham Study.
        JAMA. 1986; 256: 2835-2838
        • Gami A.S.
        • Witt B.J.
        • Howard D.E.
        • et al.
        Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies.
        J Am Coll Cardiol. 2007; 49: 403-414
        • Morrow J.D.
        • Parsons III, W.G.
        • Roberts II, L.J.
        Release of markedly increased quantities of prostaglandin D2 in vivo in humans following the administration of nicotinic acid.
        Prostaglandins. 1989; 38: 263-274
        • Meyers C.D.
        • Carr M.C.
        • Park S.
        • Brunzell J.D.
        Varying cost and free nicotinic acid content in over-the-counter niacin preparations for dyslipidemia.
        Ann Intern Med. 2003; 139: 996-1002
        • Coronary Drug Research Project Group
        Clofibrate and niacin in coronary heart disease.
        JAMA. 1975; 231: 360-381
        • Piepho R.W.
        The pharmacokinetics and pharmacodynamics of agents proven to raise high-density lipoprotein cholesterol.
        Am J Cardiol. 2000; 86: 35L-40L
        • McKenney J.M.
        • Proctor J.D.
        • Harris S.
        • Chinchili V.M.
        Comparison of the efficacy and toxic effects of sustained- vs immediate-release niacin in hypercholesterolemic patients.
        JAMA. 1994; 271: 672-677
        • Knopp R.H.
        Evaluating niacin in its various forms.
        Am J Cardiol. 2000; 86: 51L-56L
        • Nofer J.-R.
        • Kehrel B.
        • Fobker M.
        • Levkau B.
        • Assmann G.
        • Eckardstein A.
        HDL and arteriosclerosis: beyond reverse cholesterol transport.
        Atherosclerosis. 2002; 161: 1-16
        • Kwiterovich P.
        The antiatherogenic role of high density lipoprotein cholesterol.
        Am J Cardiol. 1998; 82: 13-21Q
        • Yuhanna I.S.
        • Zhu Y.
        • Cox B.E.
        • et al.
        High density lipoprotein binding to scavenger receptor-B1 activates endothelial nitric oxide synthase.
        Nat Med. 2001; 7: 853-857
        • Li X.P.
        • Zhao S.P.
        • Zhang X.Y.
        • Liu L.
        • Gao M.
        • Zhou Q.C.
        Protective effect of high density lipoprotein on endothelium-dependent vasodilatation.
        Int J Cardiol. 2000; 73: 231-236
        • Parthasarathy S.
        • Barnett J.
        • Fong L.
        High density lipoprotein inhibits the oxidative modification of low density lipoprotein.
        Biochem Biophys Acta. 1990; 1044: 275-283
        • Cockerill G.W.
        • Rye K.A.
        • Gamble J.R.
        • Vadas M.A.
        • Barter P.J.
        High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules.
        Thromb Vasc Biol. 1995; 15: 1987-1994
        • Lundman P.
        • Eriksson M.J.
        • Stuhlinger M.
        • Cooke J.P.
        • Hamsten A.
        • Tomvall P.
        Mild to moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma concentrations of asymmetric dimethylarginine.
        J Am Coll Cardiol. 2001; 38: 111-116
        • Gaenzer H.
        • Sturm W.
        • Neumayr G.
        • et al.
        Pronounced postprandial lipemia impairs endothelium dependent dilation of the brachial artery in men.
        Cardiovasc Res. 2001; 52: 509-516
        • Toikka J.O.
        • Ahotupa M.
        • Viikari J.S.A.
        • et al.
        Constantly low HDL cholesterol concentrations relate to endothelial dysfunction and increase in vivo LDL-oxidation in healthy young men.
        Atherosclerosis. 1999; 147: 133-138
        • Suwaidi J.A.
        • Hamasaki S.
        • Higano S.T.
        • et al.
        Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction.
        Circulation. 2000; 101: 948-954
        • Watanabe H.
        • Soderlund S.
        • Soro-Paavonen A.
        • et al.
        Decreased high-density lipoprotein (HDL) particle size, Pre β-, and large HDL subspecies concentration in Finnish low-HDL families: relationship with intima-media thickness.
        Arterioscler Thomb Vasc Biol. 2006; 26: 897-902
        • Birjmohun R.S.
        • Hutten B.A.
        • Kastelein J.J.P.
        • Stroes E.S.G.
        Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds.
        J Am Coll Cardiol. 2005; 45: 185-197
        • Jin F.Y.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin decreases removal of high-density lipoprotein apolipoprotein A-I but not cholesterol ester by Hep G2 cells.
        Arterioscl Thomb Vasc Biol. 1997; 17: 2020-2028
        • Sakai T.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin, but not gemfibrozil, selectively increases LP-AI, a cardioprotective subfraction of HDL, in patients with low HDL cholesterol.
        Arterioscler Thromb Vasc Biol. 2001; 21: 1783-1789
        • Kuvin J.T.
        • Dave D.M.
        • Sliney K.A.
        Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease.
        Am J Cardiol. 2006; 98: 743-745
        • Rosenson R.S.
        • Otvos J.D.
        • Freedman D.S.
        Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the Pravastatin Limitation of Atherosclerosis in the Coronary Arteries (PLAC-1) trial.
        Am J Cardiol. 2002; 90: 89-94
        • Yu B.L.
        • Zhao S.P.
        Anti-inflammatory effect is an important property of niacin on atherosclerosis beyond its lipid-altering effects.
        Med Hypotheses. 2007; 69: 90-94
        • Ganji S.H.
        • Tavintharan S.
        • Zhu D.
        • Xing Y.
        • Kamanna V.S.
        • Kashyap M.L.
        Niacin noncompetitively inhibits DGAT2 but not DGAT1 activity in HepG2 cells.
        J Lipid Res. 2004; 45: 1835-1845
        • Rubic T.
        • Trottmann M.
        • Lorenz R.L.
        Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin.
        Biochem Pharmacol. 2004; 67: 411-419
        • Tunaru S.
        • Schaub A.
        • Wufka C.
        • Blaukat A.
        • Pfeffer K.
        • Offermanns S.
        PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect.
        Nat Med. 2003; 9: 352-355
        • Tomoda H.
        • Aoki N.
        Prognostic value of C-reactive protein levels within six hours after onset of acute myocardial infarction.
        Am Heart J. 2000; 140: 324-328
        • Ridker P.M.
        • Hennekens C.H.
        • Buring J.E.
        C-reactive protein and other markers of inflammation in the prediction of cardio-vascular disease in women.
        N Engl J Med. 2001; 342: 836-843
        • Grundy S.M.
        • Vega G.L.
        • McGovern M.E.
        • et al.
        Efficacy, safety and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial (ADVENT).
        Arch Intern Med. 2002; 162: 1568-1576
        • Westphal S.
        • Borucki K.
        • Taneva E.
        • Makarova R.
        • Luley C.
        Extended-release niacin raises adiponectin and leptin.
        Atherosclerosis. 2007; 193: 361-365
        • Salmenniemi U.
        • Ruotsalainen E.
        • Pihlajamaki J.
        • et al.
        Multiple abnormalities in glucose and energy metabolism and coordinated changes in levels of adiponectin, cytokines, and adhesion molecules in subjects with metabolic syndrome.
        Circulation. 2004; 110: 3842-3848
        • Kumada M.
        • Kihara S.
        • Sumitsuji S.
        • et al.
        Coronary artery disease: association of hypoadiponectinemia with coronary artery disease in men.
        Arterioscler Thromb Vasc Biol. 2003; 23: 85-89
        • Brown S.L.
        • Sobel B.E.
        • Fujii S.
        Attenuation of synthesis of plasminogen activator inhibitor type 1 by niacin: a potential link between lipid lowering and fibrinolysis.
        Circulation. 1995; 92: 767-772
        • Chesney C.M.
        • Elam M.B.
        • Herrd J.A.
        • et al.
        Effect of niacin, warfarin and antioxidant therapy on coagulation parameters in patients with peripheral arterial disease in the Arterial Disease Multiple Intervention Trial (ADMIT).
        Am J Cardiol. 2000; 140: 631-636
        • Quyyumi A.
        • Dakak N.
        • Andrews N.P.
        • Gilligan D.M.
        • Panza J.A.
        • Cannon 3rd, R.O.
        Contribution of nitric oxide to metabolic coronary vasodilation in the human heart.
        Circulation. 1995; 92: 320-326
        • Westphal S.
        • Borucki K.
        • Luley C.
        • Martens-Lobenhoffer J.
        • Bode-Boger S.M.
        Treatment with niacin lowers ADMA.
        Atherosclerosis. 2006; 184: 448-450
        • Corretti M.C.
        • Anderson T.J.
        • Benjamin E.J.
        • et al.
        Guidelines for the ultrasound assessment of endothelium-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force.
        J Am Coll Cardiol. 2002; 39: 257-265
        • Kuvin J.T.
        • Ramet M.E.
        • Patel R.A.
        • Pandian N.G.
        • Mendelsohn M.E.
        • Karas R.H.
        A novel mechanism for beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression.
        Am Heart J. 2002; 144: 165-172
        • Benjo A.M.
        • Maranh R.C.
        • Coimbra R.S.
        • et al.
        Accumulation of chylomicron remnants and impaired vascular reactivity occur in subjects with isolated low HDL cholesterol: effects of niacin treatment.
        Atherosclerosis. 2006; 187: 116-122
        • Miettinen T.A.
        • Taskinen M.-R.
        • Pelkonen R.
        • Nikkila E.A.
        Glucose tolerance and plasma insulin in man during acute and chronic administration of nicotinic acid.
        Acta Med Scand. 1969; 186: 247-253
        • Kelly J.J.
        • Lawson G.A.
        • Campbell L.V.
        • et al.
        Effects of nicotinic acid on insulin sensitivity and blood pressure in healthy subjects.
        J Hum Hypertens. 2000; 14: 567-572
        • Poynten A.M.
        • Gan S.K.
        • Kriketos A.D.
        • et al.
        Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content.
        Metabolism. 2003; 52: 699-704
        • Garg A.
        • Grundy S.M.
        Nicotinic acid as therapy for dyslipidemia in non-insulin dependent diabetes mellitus.
        JAMA. 1990; 264: 723-726
        • Vega G.L.
        • Cater N.B.
        • Meguro S.
        • Grundy S.M.
        Influence of extended release nicotinic acid on nonesterified fatty acid flux in the metabolic syndrome with atherogenic dyslipidemia.
        Am J Cardiol. 2005; 95: 1309-1313
        • Elam M.B.
        • Hunninghake D.B.
        • Davis K.B.
        • et al.
        Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: A randomized trial.
        JAMA. 2000; 284: 1263-1270
        • Canner P.L.
        • Furberg C.D.
        • Terrin M.L.
        • McGovern M.E.
        Benefits of niacin by glycemic status in patients with healed myocardial infarction.
        Am J Cardiol. 2005; 95 (from the Coronary Drug Project): 254-257
        • Taylor A.J.
        • Sullenberger L.E.
        • Lee H.J.
        • Lee J.K.
        • Grace K.A.
        Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: a double-blind, placebo-controlled study of extended-release niacin on atherosclerosis progression in secondary prevention patients treated with statins.
        Circulation. 2004; 110: 3512-3517
        • Al Shaer M.H.
        • Jerome W.P.
        The appropriateness of nicotinic acid derivative use in patients with the metabolic syndrome: insights from the ARBITER 2 study.
        Am J Cardiol. 2006; 98: 275-276
        • Bantle J.P.
        • Wylie-Rosett J.
        • Albright A.L.
        • et al.
        Nutrition recommendations and interventions for diabetes—2006: a position statement of the American Diabetes Association.
        Diabetes Care. 2006; 29: 2140-2157
        • Altschul R.
        • Hoffer A.
        • Stephen J.D.
        Influence of nicotinic acid on serum cholesterol in man.
        Arch Biochem Biophys. 1955; 54: 558-559
        • Genest Jr, J.
        • McNamara J.R.
        • Ordovas M.J.M.
        • et al.
        Lipoprotein cholesterol, apolipoprotein A-I and B and lipoprotein (a) abnormalities in men with premature coronary artery disease.
        J Am Coll Cardiol. 1992; 19: 792-802
        • The Coronary Drug Project Research Group
        The Coronary Drug Project: design, methods, and baseline results.
        Circulation. 1973; 47: 1-50
        • Canner P.L.
        • Berge K.G.
        • Wenger N.K.
        • et al.
        Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin.
        J Am Coll Cardiol. 1986; 8: 1245-1255
        • Carlson L.A.
        • Rosenhamer G.
        Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid.
        Acta Med Scand. 1988; 223: 405-418
        • Blankenhorn D.H.
        • Nessim S.A.
        • Johnson R.L.
        • Sanmarco M.E.
        • Azen S.P.
        • Cashin-Hemphill L.
        Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts.
        JAMA. 1987; 257: 3233-3240
        • Cashin-Hamphill L.
        • Mack W.J.
        • Pogoda J.M.
        • Sanmarco M.E.
        • Azen S.P.
        • Blankenhorn D.H.
        Beneficial effects of colestipol-niacin on coronary atherosclerosis.
        JAMA. 1990; 264: 3013-3017
        • Kane J.P.
        • Malloy M.J.
        • Ports T.A.
        • Phillips N.R.
        • Diehl J.C.
        • Havel R.J.
        Regression of coronary atherosclerosis during treatment of familial hypercholesterolemia with combined drug regimens.
        JAMA. 1990; 264: 3007-3012
        • Brown G.
        • Albers J.J.
        • Fisher L.D.
        • et al.
        Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B.
        N Engl J Med. 1990; 323: 1289-1298
        • Brown B.G.
        • Zhao X.Q.
        • Chait A.
        • et al.
        Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease.
        N Engl J Med. 2001; 345: 1583-1592
        • Whitney E.J.
        • Krasuski R.A.
        • Personius B.E.
        • et al.
        A randomized trial of a strategy for increasing high-density lipoprotein cholesterol levels: effects on progression of coronary heart disease and clinical events.
        Ann Intern Med. 2005; 142: 95-104
        • Anne Goldberg A.
        • Alagona P.
        • Capuzzi D.M.
        • et al.
        Multiple-dose efficacy and safety of an extended-release form of niacin in the management of hyperlipidemia.
        Am J Cardiol. 2000; 85: 1100-1105
        • Bots M.L.
        • Grobbee D.E.
        Intima media thickness as a surrogate marker for generalised atherosclerosis.
        Cardiovasc Drugs Ther. 2002; 16: 341-351
        • Taylor A.J.
        • Lee H.J.
        • Sullenberger L.E.
        The effect of 24 months of combination statin and extended-release niacin on carotid intima-media thickness: ARBITER 3.
        Curr Med Res Opin. 2006; 22: 2243-2250
        • Brown B.G.
        Niaspan® in the management of dyslipidemia: the evidence.
        Eur Heart J Suppl. 2006; 8: F60-F67
      1. Clinical Treatment of HDL to Reduce the Incidence of Vascular Events HPS2-THRIVE. Available at: Accessed June 1, 2007.