The National Lipid Association 2nd Annual Masters Summit: The Role of the Digestive Tract in Lipid Metabolism and CV Risk, November 3, 2007, Orlando, FL| Volume 2, ISSUE 2, PS11-S19, April 01, 2008

Plant sterols and stanols: Their role in health and disease

      Abstract

      Mammalian physiological processes, and likely any organism with a biliary tree, can distinguish between dietary cholesterol and noncholesterols, retaining very little of the noncholesterol in their bodies. Historically, the distinction between plant sterols and cholesterol has been known about for more than a century. That plants sterols are not “absorbed” has been investigated for almost half a century. The ingestion of plant sterols in gram quantities has been shown to interfere with cholesterol absorption and is one of the oldest pharmacologic therapies for hypercholesterolemia. Although the basis for the latter has been shown to be caused by exclusion of cholesterol from intestinal micelles by plant sterols, it was identification of a rare genetic disease, sitosterolemia, first described in 1974, that led to the hypothesis that specific molecular mechanism(s) governed both the entry and excretion of sterols by the body. This work will cover the physiology of dietary sterol metabolism, genetics, and pathophysiology of sitosterolemia. Additionally, the role of plant sterols in normal and abnormal metabolism in humans as well as selected animal models will be discussed.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lu K.
        • Lee M.
        • Patel S.B.
        Dietary cholesterol absorption; more than just bile.
        Trends Endocrin Metab. 2001; 12: 314-320
      1. Schoenheimer R. Uber die Bedeutung der Pflanzensterine fur den tierischen Organismus. Hoppe-Seylers Z Physiol Chem. 129;180:1–5.

        • Patel S.B.
        • Honda A.
        • Salen G.
        Sitosterolemia: exclusion of genes involved in reduced cholesterol biosynthesis.
        J Lipid Res. 1998; 39: 1055-1061
        • Rudel L.L.
        • Lee R.G.
        • Cockman T.L.
        Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis.
        Curr Opin Lipidol. 2001; 12: 121-127
        • Bosner M.S.
        • Lange L.G.
        • Stenson W.F.
        • Ostlund Jr, R.E.
        Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry.
        J Lipid Res. 1999; 40: 302-308
        • Bhattacharyya A.K.
        • Connor W.E.
        Beta-sitosterolemia and xanthomatosis.
        J Clin Invest. 1974; 53: 1033-1043
      2. Bjorkhem I, Boberg KM, Leitersdorf E. Inborn errors in bile acid biosynthesis and storage of sterols other than cholesterol. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill Inc. Available at http://www.ommbid.com. Accessed September 23, 2005.

        • Salen G.
        • Shefer S.
        • Nguyen L.
        • et al.
        Sitosterolemia.
        J Lipid Res. 1992; 33: 945-955
        • Salen G.
        • Shore V.
        • Tint G.S.
        • et al.
        Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis.
        J Lipid Res. 1989; 30: 1319-1330
        • Beaty T.H.
        • Kwiterovich Jr, P.
        • Khoury M.J.
        • et al.
        Genetic analysis of plasma sitosterol, apoprotein B, and lipoproteins in a large Amish pedigree with sitosterolemia.
        Am J Hum Genet. 1986; 38: 492-504
        • Salen G.
        • Horak I.
        • Rothkopf M.
        • et al.
        Lethal atherosclerosis associated with abnormal plasma and tissue sterol composition in sitosterolemia with xanthomatosis.
        J Lipid Res. 1985; 26: 1126-1133
        • Patel S.B.
        • Salen G.
        • Hidaka H.
        • et al.
        Mapping a gene involved in regulating dietary cholesterol absorption.
        J Clin Invest. 1998; 102: 1041-1044
        • Lee M.H.
        • Lu K.
        • Patel S.B.
        Genetic basis of sitosterolemia.
        Curr Opin Lipidol. 2001; 12: 141-149
        • Lu K.
        • Lee M.-H.
        • Carpten J.D.
        • Sekhon M.
        • Patel S.B.
        High-resolution physical and transcript map of human chromosome 2p21 containing the sitosterolemia locus.
        Eur J Hum Genet. 2001; 9: 364-374
        • Lee M.-H.
        • Lu K.
        • Hazard S.
        • et al.
        Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption.
        Nat Genet. 2001; 27: 79-83
        • Lu K.
        • Lee M.H.
        • Yu H.
        • et al.
        Molecular cloning, genomic organization, genetic variations, and characterization of murine sterolin genes Abcg5 and Abcg8.
        J Lipid Res. 2002; 43: 565-578
        • Berge K.E.
        • Tian H.
        • Graf G.A.
        • et al.
        Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters.
        Science. 2000; 290: 1771-1775
        • Lu K.
        • Lee M.-H.
        • Hazard S.
        • et al.
        Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8 respectively.
        Am J Hum Genet. 2001; 69: 278-290
        • Graf G.A.
        • Li W.P.
        • Gerard R.D.
        • et al.
        Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface.
        J Clin Invest. 2002; 110: 659-669
        • Graf G.A.
        • Yu L.
        • Li W.P.
        • et al.
        ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion.
        J Biol Chem. 2003; 278: 48275-48282
        • Graf G.A.
        • Cohen J.C.
        • Hobbs H.H.
        Missense mutations in ABCG5 and ABCG8 disrupt heterodimerization and trafficking.
        J Biol Chem. 2004; 279: 24881-24888
        • Wang J.
        • Sun F.
        • Zhang D.W.
        • et al.
        Sterol transfer by ABCG5 and ABCG8: In vitro assay and reconstitution.
        J Biol Chem. 2006; 281: 27894-27904
        • Zhang D.W.
        • Graf G.A.
        • Gerard R.D.
        • Cohen J.C.
        • Hobbs H.H.
        Functional asymmetry of nucleotide-binding domains in ABCG5 and ABCG8.
        J Biol Chem. 2006; 281: 4507-4516
        • Yu L.
        • Hammer R.E.
        • Li-Hawkins J.
        • et al.
        Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion.
        Proc Natl Acad Sci U S A. 2002; 99: 16237-16242
        • Yu L.
        • Li-Hawkins J.
        • Hammer R.E.
        • et al.
        Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol.
        J Clin Invest. 2002; 110: 671-680
        • Klett E.L.
        • Lu K.
        • Kosters A.
        • et al.
        A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol.
        BMC Med. 2004; 2: 5
        • Plosch T.
        • Bloks V.W.
        • Terasawa Y.
        • et al.
        Sitosterolemia in ABC-Transporter G5-deficient mice is aggravated on activation of the liver-X receptor.
        Gastroenterology. 2004; 126: 290-300
        • Wu J.E.
        • Basso F.
        • Shamburek R.D.
        • et al.
        Hepatic ABCG5 and ABCG8 overexpression increases hepatobiliary sterol transport but does not alter aortic atherosclerosis in transgenic mice.
        J Biol Chem. 2004; 279: 22913-22925
        • Kosters A.
        • Kunne C.
        • Looije N.
        • Patel S.B.
        • Oude Elferink R.P.
        • Groen A.K.
        The mechanism of Abcg5/Abcg8 in biliary cholesterol secretion in mice.
        J Lipid Res. 2006; 47: 1959-1966
        • Basso F.
        • Freeman L.A.
        • Ko C.
        • et al.
        Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited.
        J Lipid Res. 2007; 48: 114-126
        • Wang H.H.
        • Patel S.B.
        • Carey M.C.
        • Wang D.Q.
        Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion in Abcg8(−/−) mice.
        Hepatology. 2007; 45: 998-1006
        • Kwiterovich Jr, P.O.
        • Chen S.C.
        • Virgil D.G.
        • Schweitzer A.
        • Arnold D.R.
        • Kratz L.E.
        Response of obligate heterozygotes for phytosterolemia to a low-fat diet and to a plant sterol ester dietary challenge.
        J Lipid Res. 2003; 44: 1143-1155
        • Salen G.
        • Tint G.S.
        • Shefer S.
        • Shore V.
        • Nguyen L.
        Increased sitosterol absorption is offset by rapid elimination to prevent accumulation in heterozygotes with sitosterolemia.
        Arterioscler Thromb. 1992; 12: 563-568
        • Miettinen T.A.
        • Klett E.L.
        • Gylling H.
        • Isoniemi H.
        • Patel S.B.
        Liver transplantation in a patient with sitosterolemia and cirrhosis.
        Gastroenterology. 2006; 130: 542-547
        • Rees D.C.
        • Iolascon A.
        • Carella M.
        • et al.
        Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia.
        Br J Haematol. 2005; 130: 297-309
        • Mushtaq T.
        • Wales J.K.
        • Wright N.P.
        Adrenal insufficiency in phytosterolaemia.
        Eur J Endocrinol. 2007; 157: S61-S65
        • Boomsma D.I.
        • Princen H.M.
        • Frants R.R.
        • Gevers Leuven J.A.
        • Kempen H.J.
        Genetic analysis of indicators of cholesterol synthesis and absorption: lathosterol and phytosterols in Dutch twins and their parents.
        Twin Res. 2003; 6: 307-314
        • Berge K.E.
        • von Bergmann K.
        • Lutjohann D.
        • et al.
        Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8.
        J Lipid Res. 2002; 43: 486-494
        • Sehayek E.
        • Duncan E.M.
        • Lutjohann D.
        • et al.
        Loci on chromosomes 14 and 2, distinct from ABCG5/ABCG8, regulate plasma plant sterol levels in a C57BL/6J x CASA/Rk intercross.
        Proc Natl Acad Sci U S A. 2002; 99: 16215-16219
        • Wittenburg H.
        • Lyons M.A.
        • Li R.
        • et al.
        Association of a lithogenic Abcg5/Abcg8 allele on Chromosome 17 (Lith9) with cholesterol gallstone formation in PERA/EiJ mice.
        Mamm Genome. 2005; 16: 495-504
        • Grunhage F.
        • Acalovschi M.
        • Tirziu S.
        • et al.
        Increased gallstone risk in humans conferred by common variant of hepatic ATP-binding cassette transporter for cholesterol.
        Hepatology. 2007; 46: 793-801
        • Wang Y.
        • Jiang Z.Y.
        • Fei J.
        • et al.
        ATP binding cassette G8 T400K polymorphism may affect the risk of gallstone disease among Chinese males.
        Clin Chim Acta. 2007; 284: 80-85
        • Acalovschi M.
        • Ciocan A.
        • Mostean O.
        • et al.
        Are plasma lipid levels related to ABCG5/ABCG8 polymorphisms?.
        Eur J Intern Med. 2006; 17: 490-494
        • Chan D.C.
        • Watts G.F.
        • Barrett P.H.
        • Whitfield A.J.
        • van Bockxmeer F.M.
        ATP-binding cassette transporter G8 gene as a determinant of apolipoprotein B-100 kinetics in overweight men.
        Arterioscler Thromb Vasc Biol. 2004; 24: 2188-2191
        • Gylling H.
        • Hallikainen M.
        • Pihlajamaki J.
        • et al.
        Polymorphisms in the ABCG5 and ABCG8 genes associate with cholesterol absorption and insulin sensitivity.
        J Lipid Res. 2004; 45: 1660-1665
        • Hubacek J.A.
        • Berge K.E.
        • Stefkova J.
        • et al.
        Polymorphisms in ABCG5 and ABCG8 transporters and plasma cholesterol levels.
        Physiol Res. 2004; 53: 395-401
        • Kajinami K.
        • Brousseau M.E.
        • Nartsupha C.
        • Ordovas J.M.
        • Schaefer E.J.
        ATP binding cassette transporter G5 and G8 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin.
        J Lipid Res. 2004; 45: 653-656
        • Miwa K.
        • Inazu A.
        • Kobayashi J.
        • et al.
        ATP-binding cassette transporter G8 M429V polymorphism as a novel genetic marker of higher cholesterol absorption in hypercholesterolaemic Japanese subjects.
        Clin Sci (Lond). 2005; 109: 183-188
        • Herron K.L.
        • McGrane M.M.
        • Waters D.
        • et al.
        The ABCG5 polymorphism contributes to individual responses to dietary cholesterol and carotenoids in eggs.
        J Nutr. 2006; 136: 1161-1165
        • Santosa S.
        • Demonty I.
        • Lichtenstein A.H.
        • Ordovas J.M.
        • Jones P.J.H.
        Single nucleotide polymorphisms in ABCG5 and ABCG8 are associated with changes in cholesterol metabolism during weight loss.
        J Lipid Res. 2007; 48: 2607-2613
        • Glueck C.J.
        • Speirs J.
        • Tracy T.
        • Streicher P.
        • Illig E.
        • Vandegrift J.
        Relationships of serum plant sterols (phytosterols) and cholesterol in 595 hypercholesterolemic subjects, and familial aggregation of phytosterols, cholesterol, and premature coronary heart disease in hyperphytosterolemic probands and their first-degree relatives.
        Metabolism. 1991; 40: 842-848
        • Rajaratnam R.A.
        • Gylling H.
        • Miettinen T.A.
        Independent association of serum squalene and noncholesterol sterols with coronary artery disease in postmenopausal women.
        J Am Coll Cardiol. 2000; 35: 1185-1191
        • Sudhop T.
        • Gottwald B.M.
        • von Bergmann K.
        Serum plant sterols as a potential risk factor for coronary heart disease.
        Metabolism. 2002; 51: 1519-1521
        • Assmann G.
        • Cullen P.
        • Erbey J.
        • Ramey D.R.
        • Kannenberg F.
        • Schulte H.
        Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: results of a nested case-control analysis of the Prospective Cardiovascular Münster (PROCAM) study.
        Nutr Metab Cardiovasc Dis. 2006; 16: 13-21
        • Wilund K.R.
        • Yu L.
        • Xu F.
        • et al.
        Plant sterol levels are not associated with atherosclerosis in mice and men.
        Arterioscler Thromb Vasc Biol. 2004; 24: 2326-2332
        • Pinedo S.
        • Vissers M.N.
        • Bergmann K.
        • et al.
        Plasma levels of plant sterols and the risk of coronary artery disease: the prospective EPIC-Norfolk Population Study.
        J Lipid Res. 2007; 48: 139-144
        • Salen G.
        • von Bergmann K.
        • Lutjohann D.
        • et al.
        Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia.
        Circulation. 2004; 109: 966-971
        • Sudhop T.
        • Lutjohann D.
        • Kodal A.
        • et al.
        Inhibition of intestinal cholesterol absorption by ezetimibe in humans.
        Circulation. 2002; 106: 1943-1948