Background
Homozygous familial hypercholesterolemia (FH) is a rare disorder that may affect 1
person per million. Early initiation of aggressive cholesterol-lowering therapy is
essential to prevent premature coronary heart disease. Selective removal of low-density
lipoprotein (LDL) by LDL apheresis is a reliable method of treatment.
Methods and Results
Cholesterol efflux mediators of homozygous FH patients on weekly LDL apheresis were
compared with those of age- and sex-matched heterozygous FH patients receiving oral
medication only and with healthy control subjects. The data show that (1) compared
with healthy controls, homozygous FH patients have significantly lower plasma levels
of high-density lipoprotein cholesterol and apoA-I and significantly lower cholesterol-acceptor
capacity of serum to promote cholesterol efflux from cholesterol-loaded THP-1 cells,
combined with significantly lower peripheral blood mononuclear cell gene expression
levels of ATP-binding cassette (ABC) transporter G1 and borderline-significantly lower
levels of ABCA1 and scavenger receptor class B type I (SR-BI); and (2) compared with
pre-LDL apheresis (a day before treatment), postapheresis (15 days later; on the day
after the weekly treatment) levels of HDL cholesterol and apoA-I were significantly
reduced, with no significant effect on cholesterol-acceptor capacity of serum or on
peripheral blood mononuclear cell gene expression levels of the cellular transporters,
except for a borderline-significant reduction in ABCA1 mRNA levels.
Conclusions
The data showing decreased levels of cholesterol efflux mediators in plasma and cells
may suggest that the overall cholesterol efflux capacity is impaired in homozygous
FH patients. However, LDL apheresis may maintain cholesterol efflux capacity, despite
a lowering levels of high-density lipoprotein cholesterol and apoA-I.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Clinical LipidologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- A receptor-mediated pathway for cholesterol homeostasis.Science. 1986; 232: 34-47
- Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review.Am J Epidemiol. 2004; 160: 407-420
- Familial defective apolipoprotein B-100: enhanced binding of monoclonal antibody MB47 to abnormal low density lipoproteins.Proc Natl Acad Sci U S A. 1988; 85: 9758-9762
- ABCA1. The gatekeeper for eliminating excess tissue cholesterol.J Lipid Res. 2001; 42: 1173-1179
- ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins.Proc Natl Acad Sci U S A. 2004; 101: 9774-9779
- Scavenger receptor BI and cholesterol trafficking.Curr Opin Lipidol. 1999; 10: 329-339
- Importance of different pathways of cellular cholesterol efflux.Arterioscler Thromb Vasc Biol. 2003; 23: 712-719
- Triglyceride-rich HDL3 from patients with familial hypercholesterolemia are less able to inhibit cytokine release or to promote cholesterol efflux.J Nutr. 2006; 136: 877-881
- Atheroprotective reverse cholesterol transport pathway is defective in familial hypercholesterolemia.Arterioscler Thromb Vasc Biol. 2011; 31: 1675-1681
- Severe hypercholesterolaemia: therapeutic goals and eligibility criteria for LDL apheresis in Europe.Curr Opin Lipidol. 2010; 21: 492-498
- Prospective randomised cross-over comparison of three LDL-apheresis systems in statin pretreated patients with familial hypercholesterolaemia.Atherosclerosis. 2000; 151: 493-499
- The rebound of lipoproteins after LDL-apheresis. Kinetics and estimation of mean lipoprotein levels.Atherosclerosis. 2000; 152: 519-526
- LDL-apheresis depletes apoE-HDL and pre{beta}-1 HDL in Familial Hypercholesterolemia: relevance to atheroprotection.J Lipid Res. 2011; 52: 2304-2313
- Impact of LDL apheresis on atheroprotective reverse cholesterol transport pathway in familial hypercholesterolemia.J Lipid Res. 2012; 53: 767-775
- Apheresis in homozygous familial hypercholesterolemia: the results of a follow-up of all Norwegian patients with homozygous familial hypercholesterolemia.J Clin Lipidol. 2012; 6: 331-339
- The RIN: an RNA integrity number for assigning integrity values to RNA measurements.BMC Mol Biol. 2006; 7: 3
- Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Methods. 2001; 25: 402-408
- Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.N Engl J Med. 2011; 364: 127-135
- Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism.BMC Med Genomics. 2008; 1: 60
- Macrophage reverse cholesterol transport: key to the regression of atherosclerosis?.Circulation. 2006; 113: 2548-2555
- Removal of apolipoprotein E-enriched high density lipoprotein by LDL-apheresis in familial hypercholesterolaemia: a possible activation of the reverse cholesterol transport system.Atherosclerosis. 1988; 74: 1-8
- Cellular cholesterol efflux and cholesterol loading capacity of serum: effects of LDL-apheresis.J Lipid Res. 2012; 53: 984-989
Article info
Publication history
Published online: August 10, 2012
Accepted:
August 1,
2012
Received:
May 21,
2012
Identification
Copyright
© 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.