Advertisement

Cholesterol efflux mediators in homozygous familial hypercholesterolemia patients on low-density lipoprotein apheresis

Published:August 10, 2012DOI:https://doi.org/10.1016/j.jacl.2012.08.001

      Background

      Homozygous familial hypercholesterolemia (FH) is a rare disorder that may affect 1 person per million. Early initiation of aggressive cholesterol-lowering therapy is essential to prevent premature coronary heart disease. Selective removal of low-density lipoprotein (LDL) by LDL apheresis is a reliable method of treatment.

      Methods and Results

      Cholesterol efflux mediators of homozygous FH patients on weekly LDL apheresis were compared with those of age- and sex-matched heterozygous FH patients receiving oral medication only and with healthy control subjects. The data show that (1) compared with healthy controls, homozygous FH patients have significantly lower plasma levels of high-density lipoprotein cholesterol and apoA-I and significantly lower cholesterol-acceptor capacity of serum to promote cholesterol efflux from cholesterol-loaded THP-1 cells, combined with significantly lower peripheral blood mononuclear cell gene expression levels of ATP-binding cassette (ABC) transporter G1 and borderline-significantly lower levels of ABCA1 and scavenger receptor class B type I (SR-BI); and (2) compared with pre-LDL apheresis (a day before treatment), postapheresis (15 days later; on the day after the weekly treatment) levels of HDL cholesterol and apoA-I were significantly reduced, with no significant effect on cholesterol-acceptor capacity of serum or on peripheral blood mononuclear cell gene expression levels of the cellular transporters, except for a borderline-significant reduction in ABCA1 mRNA levels.

      Conclusions

      The data showing decreased levels of cholesterol efflux mediators in plasma and cells may suggest that the overall cholesterol efflux capacity is impaired in homozygous FH patients. However, LDL apheresis may maintain cholesterol efflux capacity, despite a lowering levels of high-density lipoprotein cholesterol and apoA-I.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brown M.S.
        • Goldstein J.L.
        A receptor-mediated pathway for cholesterol homeostasis.
        Science. 1986; 232: 34-47
        • Austin M.A.
        • Hutter C.M.
        • Zimmern R.L.
        • Humphries S.E.
        Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review.
        Am J Epidemiol. 2004; 160: 407-420
        • Weisgraber K.H.
        • Innerarity T.L.
        • Newhouse Y.M.
        • et al.
        Familial defective apolipoprotein B-100: enhanced binding of monoclonal antibody MB47 to abnormal low density lipoproteins.
        Proc Natl Acad Sci U S A. 1988; 85: 9758-9762
        • Oram J.F.
        • Lawn R.M.
        ABCA1. The gatekeeper for eliminating excess tissue cholesterol.
        J Lipid Res. 2001; 42: 1173-1179
        • Wang N.
        • Lan D.
        • Chen W.
        • Matsuura F.
        • Tall A.R.
        ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins.
        Proc Natl Acad Sci U S A. 2004; 101: 9774-9779
        • Williams D.L.
        • Connelly M.A.
        • Temel R.E.
        • et al.
        Scavenger receptor BI and cholesterol trafficking.
        Curr Opin Lipidol. 1999; 10: 329-339
        • Yancey P.G.
        • Bortnick A.E.
        • Kellner-Weibel G.
        • de la Llera-Moya M.
        • Phillips M.C.
        • Rothblat G.H.
        Importance of different pathways of cellular cholesterol efflux.
        Arterioscler Thromb Vasc Biol. 2003; 23: 712-719
        • Ottestad I.O.
        • Halvorsen B.
        • Balstad T.R.
        • et al.
        Triglyceride-rich HDL3 from patients with familial hypercholesterolemia are less able to inhibit cytokine release or to promote cholesterol efflux.
        J Nutr. 2006; 136: 877-881
        • Bellanger N.
        • Orsoni A.
        • Julia Z.
        • et al.
        Atheroprotective reverse cholesterol transport pathway is defective in familial hypercholesterolemia.
        Arterioscler Thromb Vasc Biol. 2011; 31: 1675-1681
        • Thompson G.R.
        • Catapano A.
        • Saheb S.
        • et al.
        Severe hypercholesterolaemia: therapeutic goals and eligibility criteria for LDL apheresis in Europe.
        Curr Opin Lipidol. 2010; 21: 492-498
        • Schmaldienst S.
        • Banyai S.
        • Stulnig T.M.
        • et al.
        Prospective randomised cross-over comparison of three LDL-apheresis systems in statin pretreated patients with familial hypercholesterolaemia.
        Atherosclerosis. 2000; 151: 493-499
        • Kroon A.A.
        • van't Hof M.A.
        • Demacker P.N.
        • Stalenhoef A.F.
        The rebound of lipoproteins after LDL-apheresis. Kinetics and estimation of mean lipoprotein levels.
        Atherosclerosis. 2000; 152: 519-526
        • Orsoni A.
        • Saheb S.
        • Levels J.H.
        • et al.
        LDL-apheresis depletes apoE-HDL and pre{beta}-1 HDL in Familial Hypercholesterolemia: relevance to atheroprotection.
        J Lipid Res. 2011; 52: 2304-2313
        • Orsoni A.
        • Villard E.F.
        • Bruckert E.
        • et al.
        Impact of LDL apheresis on atheroprotective reverse cholesterol transport pathway in familial hypercholesterolemia.
        J Lipid Res. 2012; 53: 767-775
        • Græsdal A.
        • Prøven Bogsrud M.
        • Holven K.B.
        • et al.
        Apheresis in homozygous familial hypercholesterolemia: the results of a follow-up of all Norwegian patients with homozygous familial hypercholesterolemia.
        J Clin Lipidol. 2012; 6: 331-339
        • Schroeder A.
        • Mueller O.
        • Stocker S.
        • et al.
        The RIN: an RNA integrity number for assigning integrity values to RNA measurements.
        BMC Mol Biol. 2006; 7: 3
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.
        Methods. 2001; 25: 402-408
        • Khera A.V.
        • Cuchel M.
        • de la Llera-Moya M.
        • et al.
        Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.
        N Engl J Med. 2011; 364: 127-135
        • Mosig S.
        • Rennert K.
        • Büttner P.
        • et al.
        Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism.
        BMC Med Genomics. 2008; 1: 60
        • Cuchel M.
        • Rader D.J.
        Macrophage reverse cholesterol transport: key to the regression of atherosclerosis?.
        Circulation. 2006; 113: 2548-2555
        • Koizumi J.
        • Inazu A.
        • Fujita H.
        • et al.
        Removal of apolipoprotein E-enriched high density lipoprotein by LDL-apheresis in familial hypercholesterolaemia: a possible activation of the reverse cholesterol transport system.
        Atherosclerosis. 1988; 74: 1-8
        • Adorni M.P.
        • Zimetti F.
        • Puntoni M.
        • et al.
        Cellular cholesterol efflux and cholesterol loading capacity of serum: effects of LDL-apheresis.
        J Lipid Res. 2012; 53: 984-989