Advertisement

Hazelnut-enriched diet improves cardiovascular risk biomarkers beyond a lipid-lowering effect in hypercholesterolemic subjects

Published:October 29, 2012DOI:https://doi.org/10.1016/j.jacl.2012.10.005

      Background

      Tree nuts, particularly almonds, walnuts, and pistachios, have been shown to possess cardioprotective effects. However, there is little information on the effects of hazelnut consumption on cardiovascular risk markers.

      Methods

      The antiatherogenic effect of hazelnut before and after consumption in hypercholesterolemic subjects was investigated. Twenty-one hypercholesterolemic volunteers (18 men and 3 women) were recruited in a double control sandwich model intervention study with a single group and three isoenergetic diet periods. These were control diet I (4 weeks), hazelnut-enriched diet (4 weeks; hazelnut contributing 18%–20% of the total daily energy intake), and control diet period II (4 weeks). The cardiovascular risk biomarkers such as endothelial function, using flow-mediated dilation (FMD) technique, low-density lipoprotein (LDL) oxidation products and inflammatory markers such as high-sensitivity C-reactive protein (hs-CRP), soluble intercellular adhesion molecule-1, and soluble vascular cell adhesion molecule-1 (sVCAM-1) as well as lipids and lipoprotein levels were monitored.

      Results

      Consumption of a hazelnut-enriched diet significantly improved FMD (56.6%), total cholesterol (−7.8%), triacylglycerol (−7.3%), LDL-cholesterol (−6.17%), and high-density lipoprotein cholesterol (6.07%) compared with the control diet I. Oxidized-LDL, hs-CRP, and sVCAM-1 levels were significantly lower in the group ingesting a hazelnut-enriched diet compared with the control diets I and II. Modest correlations between sVCAM-1 and FMD and between sVCAM-1 and hs-CRP were observed (r = −0.49, P < .025; r = 0.66, P < .001, respectively).

      Conclusion

      Hazelnut-enriched diets may exert antiatherogenic effect by improving endothelial function, preventing LDL oxidation, and inflammatory markers, in addition to their lipid and lipoprotein-lowering effects. These beneficial effects appeared to be reversible after 4 weeks on a hazelnut-free diet. Therefore, hazelnut may be incorporated into daily diet without change in total caloric intake for sustained health benefit.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kelly J.H.
        • Sabate J.
        Nuts and coronary heart disease: an epidemiological perspective.
        Br J Nutr. 2006; 96: S61-S67
        • Kris-Etherton P.M.
        • Hu F.B.
        • Ros E.
        • Sabate J.
        The role of tree nuts peanuts in the prevention of coronary heart disease: multiple potential mechanisms.
        J Nutr. 2008; 138: 1746S-1751S
        • Ros E.
        Nuts and novel biomarkers of cardiovascular disease.
        Am J Clin Nutr. 2009; 89 (16495S–56S)
        • Alasalvar C.
        • Shahidi F.
        Natural antioxidants in tree nuts.
        Eur J Lipid Sci Technol. 2009; 111: 1056-1062
        • Alasalvar C.
        • Pelvan E.
        Fat-soluble bioactives in nuts.
        Eur J Lipid Sci Technol. 2011; 113: 943-949
        • Coates A.M.
        • Howe P.R.C.
        Edible nuts and metabolic health.
        Curr Opin Lipidol. 2007; 18: 25-30
        • Durak İ
        • Köksal İ
        • Kaçmaz M.
        • Büyükkocak S.
        • Çimen B.M.Y.
        • Öztürk H.S.
        Hazelnut supplementation enhances plasma antioxidant potential and lowers plasma cholesterol levels.
        Clin Chim Acta. 1999; 284: 113-115
        • Mercanligil S.M.
        • Arslan P.
        • Alasalvar C.
        • et al.
        Effects of hazelnut-enriched diet on plasma cholesterol and lipoprotein profiles in hypercholesterolemic adult men.
        Eur J Clin Nutr. 2006; 61: 1-9
        • Yucesan F.B.
        • Orem A.
        • Kural B.V.
        • Orem C.
        • Turan I.
        Hazelnut consumption decreases the susceptibility of LDL to oxidation, plasma oxidized LDL level and increases the ratio of large/small LDL in normolipidemic healthy subjects.
        Anadolu Kardiyol Derg. 2010; 10: 28-35
        • Bonetti P.O.
        • Lerman L.O.
        • Lerman A.
        Endothelial dysfunction: a marker of atherosclerotic risk.
        Arterioscler Vasc Biol. 2003; 23: 168-175
        • Ros E.
        • Nunez I.
        • Perez-Heras A.
        • Serra M.
        • Gilabert R.
        • Casals E.
        • Deulofeu R.
        A walnut diet improves endothelial function in hypercholesterolemic subjects: a randomized crossover trial.
        Circulation. 2004; 109: 1609-1614
        • Griel A.E.
        • Kris-Etherton P.M.
        Tree nuts and the lipid profile: a review of clinical studies.
        Br J Nutr. 2006; 96: S68-S78
        • Alasalvar C.
        • Amaral J.S.
        • Shahidi F.
        Functional lipid characteristics of Turkish Tombul hazelnut (Corylus avellana L).
        J Agric Food Chem. 2006; 54: 10177-10183
        • Sharma S.
        • Roberts S.L.
        • Hudes L.M.
        • Lusting R.E.
        • Fleming S.E.
        Macronutrient intakes and cardio metabolic risk factors in high BMI African American children.
        Nutr Metab. 2009; 6: 41-49
        • Sclavons M.M.
        • Cordonnier C.M.
        • Mailleux P.M.
        • Heller F.R.
        • Desager J.P.
        • Harvengt C.M.
        Fast separation of the three main plasma lipoprotein classes by ultracentrifugation using vertical rotor and multiple discontinuous density gradient.
        Clin Chim Acta. 1985; 153: 125-135
        • Pussinen P.J.
        • Linder H.
        • Glatter O.
        Lipoprotein associated α-tocopheryl-succinate inhibits cell growth and induces apoptosis in human MCF-7 and HBL-100 breast cancer cells.
        Biochim Biophys Acta. 2006; 1485: 129-144
        • Lowry O.H.
        • Rosenbrough N.L.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with folin phenol reagent.
        J Biol Chem. 1951; 193: 265-275
        • Paiker J.E.
        • Raal F.J.
        • Waisberg R.
        • Buthelezi E.P.
        Quantity versus quality of LDL cholesterol in patients with familial hypercholesterolemia-which is more important?.
        Clin Chim Acta. 2001; 314: 167-173
        • Esterbauer H.
        • Jurgens G.
        • Quehenberger O.
        • Koller E.
        Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes.
        J Lipid Res. 1987; 28: 495-509
        • Corretti M.C.
        • Anderson T.J.
        • Benjamin E.J.
        • et al.
        Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated dilatation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force.
        J Am Coll Cardiol. 2002; 39: 257-265
        • Sabate J.
        • Oda K.
        • Ros E.
        Nut Consumption and blood lipids: a pooled analysis of 25 intervention trials.
        Arch Intern Med. 2010; 170: 821-827
        • Sabate J.
        • Wein M.
        Nuts, blood lipids and cardiovascular disease.
        Asia Pac J Clin Nutr. 2010; 19: 131-136
        • Pober J.S.
        • Min W.
        • Bradley J.R.
        Mechanisms of endothelial dysfunction, injury and death.
        Annu Rev Pathol Mech Dis. 2009; 4: 71-95
        • Preli R.B.
        • Klein K.P.
        • Herrington D.M.
        Vascular effects of dietary L-arginine supplementation.
        Atherosclerosis. 2002; 162: 1-15
        • Borucki K.
        • Aronica S.
        • Starke I.
        • Luley C.
        • Westphal S.
        Addition of 2.5 g L-arginine in a fatty meal prevents the lipemia-induced endothelial dysfunction in healthy volunteers.
        Atherosclerosis. 2009; 205: 251-254
        • Keaney J.F.
        Atherosclerosis: from lesion formation to plaque activation and endothelial dysfunction.
        Mol Asp Med. 2000; 21: 99-166
        • Bloomhoff R.
        • Carlesn M.H.
        • Anderson L.F.
        • et al.
        Healthy benefits of nuts: potential role of antioxidants.
        Br J Nutr. 2006; 96: S52-S60
        • Esterbauer H.
        • Gebicki J.
        • Puhl H.
        • Jürgens G.
        The role of lipid peroxidation and antioxidants in oxidative modification of LDL.
        Free Radic Biol Med. 1992; 13: 341-390
        • Saremi A.
        • Arora R.
        Vitamin E and cardiovascular disease.
        Am J Ther. 2010; 17: e56-e65
        • Esterbauer H.
        • Dieber-Rotheneder M.
        • Striegl G.
        • Waeg G.
        Role of vitamin E in preventing the oxidation of low-density lipoprotein.
        Am J Clin Nutr. 1991; 53: S314-S321
        • Reaven P.D.
        • Khouw A.
        • Beltz W.F.
        • Parthasarathy S.
        • Witztum J.L.
        Effect of dietary antioxidant combinations in human: protection of LDL by vitamin E but not by beta-carotene.
        Arterioscler Thromb. 1993; 13: 590-600
        • Casas-Agustench P.
        • Lopez-Uriarte P.
        • Ros E.
        • Bullo M.
        • Salas-Salvado J.
        Nuts, hypertension and endothelial function.
        Nutr Metab Cardiovasc Dis. 2011; 21: S21-S33
        • Cortes B.
        • Nunez I.
        • Cofan M.
        • Gilabert R.
        • Pérez-Heras A.
        • Casals E.
        • Deulofeu R.
        • Ros E.
        Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function.
        J Am Coll Cardiol. 2006; 48: 1666-1671
        • Matsuzawa Y.
        The metabolic syndrome and adipocytokines.
        FEBS Lett. 2006; 580: 2917-2921
        • Danesh J.
        • Wheeler J.G.
        • Hirschfield G.M.
        • et al.
        C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease.
        N Engl J Med. 2004; 350: 1387-1397
        • Harangi M.
        • Szodoray P.
        • Paragh G.
        Atherosclerosis: a complex interplay of inflammatory processes.
        Clin Lipidol. 2009; 4: 167-187
        • Witztum J.L.
        • Steinberg D.
        Role of oxidized low density lipoprotein in atherogenesis.
        J Clin Invest. 1991; 88: 1785-1792
        • Casas-Agustench P.
        • Bullo M.
        • Salvado J.S.
        Nuts, inflammation and insulin resistance.
        Asia Pac J Clin Nutr. 2010; 19: 124-130
        • Davis N.
        • Katz S.
        • Wylie-Rosett J.
        The effect of diet on endothelial function.
        Cardiol Rev. 2007; 15: 62-66