Effects of bariatric surgery on HDL structure and functionality: results from a prospective trial


      • We examined how rapid surgical weight loss affects HDL functionality.
      • Weight loss is accompanied by significant alterations in HDL structure and function.
      • The apoA-I/apoE ratio of HDL may serve as surrogate marker of HDL functionality.
      • The apoA-I/apoCIII ratio of HDL may serve as surrogate marker of HDL functionality.


      In addition to high-density lipoprotein cholesterol (HDL-C) levels, HDL quality appears also very important for atheroprotection. Obese patients with metabolic syndrome have significantly reduced HDL-C levels and are usually at increased risk for coronary heart disease. Despite that weight loss benefits these patients, its effects on HDL quality and functionality is currently poorly studied.


      We investigated how rapid weight loss affects HDL structure and its antioxidant potential in patients undergoing a malabsorptive bariatric procedure.


      Fasting plasma samples were collected the day before and 6 months after the bariatric procedure from 20 morbidly obese patients with body mass index >50, then HDL was isolated and analyzed by biochemical techniques.


      We report a dramatic alteration in the apolipoprotein ratio of HDL that was accompanied by the presence of more mature HDL subspecies and a concomitant increase in the antioxidant potential of HDL. Interestingly, our obese cohort could be distinguished into 2 subgroups. In 35% of patients (n = 7), HDL before surgery had barely detectable apolipoprotein (apo) A-I and apoCIII, and the vast majority of their HDL cholesterol was packed in apoE-containing HDL particles. In the remaining 65% of patients (n = 13), HDL before surgery contained high levels of apoA-I and apoCIII, in addition to apoE. In both subgroups, surgical weight loss resulted in a switch from apoE to apoA-I–containing HDL.


      Rapid weight loss exerts a significant improvement in HDL structure and functionality that may contribute to the documented beneficial effect of malabsorptive bariatric procedures on cardiovascular health.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gordon T.
        • Castelli W.P.
        • Hjortland M.C.
        • Kannel W.B.
        • Dawber T.R.
        High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.
        Am J Med. 1977; 62: 707-714
        • Gordon D.J.
        • Probstfield J.L.
        • Garrison R.J.
        • et al.
        High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies.
        Circulation. 1989; 79: 8-15
        • Miller N.E.
        • Thelle D.S.
        • Forde O.H.
        • Mjos O.D.
        The Tromso heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study.
        Lancet. 1977; 1: 965-968
        • Wilson P.W.
        • Abbott R.D.
        • Castelli W.P.
        High density lipoprotein cholesterol and mortality. The Framingham Heart Study.
        Arteriosclerosis. 1988; 8: 737-741
        • Kypreos K.E.
        • Gkizas S.
        • Rallidis L.S.
        • Karagiannides I.
        HDL particle functionality as a primary pharmacological target for HDL-based therapies.
        Biochem Pharmacol. 2013; 85: 1575-1578
        • Voight B.F.
        • Peloso G.M.
        • Orho-Melander M.
        • et al.
        Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study.
        Lancet. 2012; 380: 572-580
        • Tsompanidi E.M.
        • Brinkmeier M.S.
        • Fotiadou E.H.
        • Giakoumi S.M.
        • Kypreos K.E.
        HDL biogenesis and functions: Role of HDL quality and quantity in atherosclerosis.
        Atherosclerosis. 2010; 208: 3-9
        • Marcel Y.L.
        • Weech P.K.
        • Nguyen T.D.
        • Milne R.W.
        • McConathy W.J.
        Apolipoproteins as the basis for heterogeneity in high-density lipoprotein2 and high-density lipoprotein3. Studies by isoelectric focusing on agarose films.
        Eur J Biochem. 1984; 143: 467-476
        • Asztalos B.F.
        • Roheim P.S.
        • Milani R.L.
        • et al.
        Distribution of ApoA-I-containing HDL subpopulations in patients with coronary heart disease.
        Arterioscler Thromb Vasc Biol. 2000; 20: 2670-2676
        • Kypreos K.E.
        • Zannis V.I.
        Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT.
        Biochem J. 2007; 403: 359-367
        • Kypreos K.E.
        ABCA1 promotes the de novo biogenesis of apolipoprotein CIII-containing HDL particles in vivo and modulates the severity of apolipoprotein CIII-induced hypertriglyceridemia.
        Biochemistry. 2008; 47: 10491-10502
        • Poirier P.
        • Giles T.D.
        • Bray G.A.
        • et al.
        Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism.
        Circulation. 2006; 113: 898-918
        • Sierra-Johnson J.
        • Romero-Corral A.
        • Somers V.K.
        • et al.
        Prognostic importance of weight loss in patients with coronary heart disease regardless of initial body mass index.
        Eur J Cardiovasc Prev Rehabil. 2008; 15: 336-340
        • Sjostrom L.
        • Lindroos A.K.
        • Peltonen M.
        • et al.
        Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery.
        N Engl J Med. 2004; 351: 2683-2693
        • Bult M.J.
        • van D.T.
        • Muller A.F.
        Surgical treatment of obesity.
        Eur J Endocrinol. 2008; 158: 135-145
        • Buchwald H.
        • Avidor Y.
        • Braunwald E.
        • et al.
        Bariatric surgery: a systematic review and meta-analysis.
        JAMA. 2004; 292: 1724-1737
        • Scopinaro N.
        Biliopancreatic diversion: mechanisms of action and long-term results.
        Obes Surg. 2006; 16: 683-689
        • Alexandrides T.K.
        • Skroubis G.
        • Kalfarentzos F.
        Resolution of diabetes mellitus and metabolic syndrome following Roux-en-Y gastric bypass and a variant of biliopancreatic diversion in patients with morbid obesity.
        Obes Surg. 2007; 17: 176-184
        • Scopinaro N.
        • Marinari G.M.
        • Camerini G.B.
        • Papadia F.S.
        • Adami G.F.
        Specific effects of biliopancreatic diversion on the major components of metabolic syndrome: a long-term follow-up study.
        Diabetes Care. 2005; 28: 2406-2411
        • Piche M.E.
        • Martin J.
        • Cianflone K.
        • et al.
        Changes in predicted cardiovascular disease risk after biliopancreatic diversion surgery in severely obese patients.
        Metabolism. 2013;
        • Kalfarentzos F.
        • Skroubis G.
        • Karamanakos S.
        • et al.
        Biliopancreatic diversion with Roux-en-Y gastric bypass and long limbs: advances in surgical treatment for super-obesity.
        Obes Surg. 2011; 21: 1849-1858
        • Kelesidis T.
        • Currier J.S.
        • Huynh D.
        • et al.
        A biochemical fluorometric method for assessing the oxidative properties of HDL.
        J Lipid Res. 2011; 52: 2341-2351
        • Georgiadou D.
        • Stamatakis K.
        • Efthimiadou E.K.
        • et al.
        Thermodynamic and structural destabilization of apoE3 by hereditary mutations associated with the development of lipoprotein glomerulopathy.
        J Lipid Res. 2013; 54: 164-176
        • Kavo A.E.
        • Rallidis L.S.
        • Sakellaropoulos G.C.
        • et al.
        Qualitative characteristics of HDL in young patients of an acute myocardial infarction.
        Atherosclerosis. 2012; 220: 257-264
        • Asztalos B.F.
        • Schaefer E.J.
        High-density lipoprotein subpopulations in pathologic conditions.
        Am J Cardiol. 2003; 91: 12E-17E
        • Matz C.E.
        • Jonas A.
        Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions.
        J Biol Chem. 1982; 257: 4535-4540
        • Chroni A.
        • Duka A.
        • Kan H.Y.
        • Liu T.
        • Zannis V.I.
        Point mutations in apolipoprotein a-I mimic the phenotype observed in patients with classical lecithin:cholesterol acyltransferase deficiency.
        Biochemistry. 2005; 44: 14353-14366
        • Adams T.D.
        • Gress R.E.
        • Smith S.C.
        • et al.
        Long-term mortality after gastric bypass surgery.
        N Engl J Med. 2007; 357: 753-761
        • McQueen M.J.
        • Hawken S.
        • Wang X.
        • et al.
        Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): a case-control study.
        Lancet. 2008; 372: 224-233
        • Walldius G.
        • Jungner I.
        Apolipoprotein A-I versus HDL cholesterol in the prediction of risk for myocardial infarction and stroke.
        Curr Opin Cardiol. 2007; 22: 359-367
        • Parish S.
        • Peto R.
        • Palmer A.
        • et al.
        The joint effects of apolipoprotein B, apolipoprotein A1, LDL cholesterol, and HDL cholesterol on risk: 3510 cases of acute myocardial infarction and 9805 controls.
        Eur Heart J. 2009; 30: 2137-2146
        • Kypreos K.E.
        HDL quality in atherosclerosis: can the ratios between apolipoproteins of HDL be used effectively to indicate risk of premature myocardial infarction?.
        Clin Lipidol. 2012; 7: 127-129
        • Kalfarentzos F.
        • Papadoulas S.
        • Skroubis G.
        • Kehagias I.
        • Loukidi A.
        • Mead N.
        Prospective evaluation of biliopancreatic diversion with Roux-en-Y gastric bypass in the super obese.
        J Gastrointest Surg. 2004; 8: 479-488
        • Karavia E.A.
        • Papachristou D.J.
        • Kotsikogianni I.
        • Triantafyllidou I.-E.
        • Kypreos K.E.
        Lecithin:cholesterol acyltransferase modulates diet-induced hepatic deposition of triglycerides in mice.
        J Nutr Biochem. 2012; 24: 567-577
        • Karavia E.A.
        • Papachristou D.J.
        • Liopeta K.
        • Triantafyllidou I.E.
        • Dimitrakopoulos O.
        • Kypreos K.E.
        Apolipoprotein A-I modulates processes associated with diet-induced nonalcoholic fatty liver disease in mice.
        Mol Med. 2012; 18: 901-912
        • Magkos F.
        • Mohammed B.S.
        • Mittendorfer B.
        Plasma lipid transfer enzymes in non-diabetic lean and obese men and women.
        Lipids. 2009; 44: 459-464
        • Korhonen T.
        • Hannuksela M.L.
        • Seppanen S.
        • Kervinen K.
        • Kesaniemi Y.A.
        • Savolainen M.J.
        The effect of the apolipoprotein E phenotype on cholesteryl ester transfer protein activity, plasma lipids and apolipoprotein A I levels in hypercholesterolaemic patients on colestipol and lovastatin treatment.
        Eur J Clin Pharmacol. 1999; 54: 903-910
        • Niculescu L.S.
        • Robciuc M.R.
        • Sanda G.M.
        • Sima A.V.
        Apolipoprotein A-I stimulates cholesteryl ester transfer protein and apolipoprotein E secretion from lipid-loaded macrophages; the role of NF-kappaB and PKA signaling pathways.
        Biochem Biophys Res Commun. 2011; 415: 497-502
        • Jong M.C.
        • Hofker M.H.
        • Havekes L.M.
        Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3.
        Arterioscler Thromb Vasc Biol. 1999; 19: 472-484
        • de Barros J.P.
        • Boualam A.
        • Gautier T.
        • et al.
        Apolipoprotein CI is a physiological regulator of cholesteryl ester transfer protein activity in human plasma but not in rabbit plasma.
        J Lipid Res. 2009; 50: 1842-1851
        • Kokkinos A.
        • Alexiadou K.
        • Liaskos C.
        • et al.
        Improvement in cardiovascular indices after Roux-en-Y gastric bypass or sleeve gastrectomy for morbid obesity.
        Obes Surg. 2013; 23: 31-38
        • Vest A.R.
        • Heneghan H.M.
        • Agarwal S.
        • Schauer P.R.
        • Young J.B.
        Bariatric surgery and cardiovascular outcomes: a systematic review.
        Heart. 2012; 98: 1763-1777
        • Matsuo Y.
        • Oberbach A.
        • Till H.
        • et al.
        Impaired HDL function in obese adolescents: impact of lifestyle intervention and bariatric surgery.
        Obesity (Silver Spring). 2013; 21: E687-E695
        • Roberts C.K.
        • Katiraie M.
        • Croymans D.M.
        • Yang O.O.
        • Kelesidis T.
        Untrained young men have dysfunctional HDL compared with strength-trained men irrespective of body weight status.
        J Appl Physiol (1985). 2013; 115: 1043-1049