Advertisement
Case Studies| Volume 13, ISSUE 3, P405-410, May 2019

A case of autosomal recessive hypercholesterolemia caused by a new variant in the LDL receptor adaptor protein 1 gene

Published:February 16, 2019DOI:https://doi.org/10.1016/j.jacl.2019.02.003

      Highlights

      • We describe a new homozygous LDLRAP1 gene variant, c.143T>C; p.(Phe48Ser).
      • This variant was associated with ARH in a woman of central European ancestry.
      • This is the first ARH case found in Central European populations.
      • Homozygosity for LDLRAP1 c.143T>C led to early onset of CHD, stroke, and xanthomas.
      • Aggressive lipid-lowering therapy is not sufficient in LDLRAP1 deficiency.

      Abstract

      We report a new variant in the LDLRAP1 gene associated with autosomal recessive hypercholesterolemia in a woman of central European ancestry.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Garcia C.K.
        • Wilund K.
        • Arca M.
        • et al.
        Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein.
        Science. 2001; 292: 1394-1398
        • He G.
        • Gupta S.
        • Yi M.
        • et al.
        ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2.
        J Biol Chem. 2002; 277: 44044-44049
        • Mishra S.K.
        • Watkins S.C.
        • Traub L.M.
        The autosomal recessive hypercholesterolemia(ARH) protein interfaces directly with the clathrin-coat machinery.
        Proc Natl Acad Sci U S A. 2002; 99: 16099-16104
        • Chen W.J.
        • Goldstein J.L.
        • Brown M.S.
        NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor.
        J Biol Chem. 1990; 265: 3116-3123
        • Michaely P.
        • Li W.P.
        • Anderson R.G.
        • et al.
        The modular adaptor protein ARH is required for low density lipoprotein (LDL) binding and internalization but not for LDL receptor clustering in coated pits.
        J Biol Chem. 2004; 279: 34023-34031
        • Soutar A.K.
        • Naoumova R.P.
        • Traub L.M.
        Genetics, clinical phenotype, and molecular cell biology of autosomal recessive hypercholesterolemia.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1963-1970
        • Arca M.
        • Zuliani G.
        • Wilund K.
        • et al.
        Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis.
        Lancet. 2002; 359: 841-847
        • Sniderman A.D.
        • Tsimikas S.
        • Fazio S.
        The severe hypercholesterolemia phenotype: clinical diagnosis, management, and emerging therapies.
        J Am Coll Cardiol. 2014; 63: 1935-1947
        • Filigheddu F.
        • Quagliarini F.
        • Campagna F.
        • et al.
        Prevalence and clinical features of heterozygous carriers of autosomal recessive hypercholesterolemia in Sardinia.
        Atherosclerosis. 2009; 207: 162-167
      1. (Available at:)
        https://portal.biobase-international.com/hgmd/
        Date accessed: October 31, 2018
        • Vrablík M.
        • Vaclová M.
        • Tichý L.
        • et al.
        Familial hypercholesterolemia in the Czech Republic: more than 17 years of systematic screening within the MedPed project.
        Physiol Res. 2017; 66: S1-S9
        • Miller S.A.
        • Dykes D.D.
        • Polesky H.F.
        A simple salting out procedure for extracting DNA from human nucleated cells.
        Nucleic Acids Res. 1988; 16: 1215
        • Pisciotta L.
        • Priore Oliva C.
        • Pes G.M.
        • et al.
        Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison.
        Atherosclerosis. 2006; 188: 398-405
        • Muntoni S.
        • Pisciotta L.
        • Muntoni S.
        • Bertolini S.
        Pharmacological treatment of a Sardinian patient affected by Autosomal recessive hypercholesterolemia (ARH).
        J Clin Lipidol. 2015; 9: 103-106
      2. (Available at:)
        • Spina R.
        • Noto D.
        • Barbagallo C.M.
        • et al.
        Genetic epidemiology of Autosomal recessive hypercholesterolemia in Sicily: identification by next-generation sequencing of a new kindred.
        J Clin Lipidol. 2018; 12: 145-151
        • D'Erasmo L.
        • Minicocci I.
        • Nicolucci A.
        • et al.
        Autosomal recessive hypercholesterolemia: long-term cardiovascular outcomes.
        J Am Coll Cardiol. 2018; 71: 279-288
        • Fahy E.F.
        • McCarthy E.
        • Steinhagen-Thiessen E.
        • Vaughan C.J.
        A case of Autosomal recessive hypercholesterolemia responsive to proprotein invertase subtilisin/kexin 9 inhibition.
        J Clin Lipidol. 2017; 11: 287-288
        • Soufi M.
        • Rust S.
        • Walter M.
        • Schaefer J.R.
        A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia.
        Gene. 2013; 521: 200-203
        • Thompson G.R.
        • Seed M.
        • Naoumova R.P.
        • et al.
        Improved cardiovascular outcomes following temporal advances in lipid-lowering therapy in a genetically-characterised cohort of familial hypercholesterolaemia homozygotes.
        Atherosclerosis. 2015; 243: 328-333
        • Alonso R.
        • Andres E.
        • Mata N.
        • et al.
        • SAFEHEART Investigators
        Lipoprotein(a) levels in familial hypercholesterolemia: an important predictor of cardiovascular disease independent of the type of LDL receptor mutation.
        J Am Coll Cardiol. 2014; 63: 1982-1989
        • Ushioda M.
        • Makita K.
        • Takamatsu K.
        • et al.
        Serum lipoprotein(a) dynamics before/after menopause and long-term effects of hormone replacement therapy on lipoprotein(a) levels in middle-aged and older Japanese women.
        Horm Metab Res. 2006; 38: 581-586
        • Gidding S.S.
        • Champagne M.A.
        • de Ferranti S.D.
        • et al.
        The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association.
        Circulation. 2015; 132: 2167-2192
        • Tada H.
        • Kawashiri M.A.
        • Ikewaki K.
        • et al.
        Altered metabolism of low-density lipoprotein and very-low-density lipoprotein remnant in Autosomal recessive hypercholesterolemia: results from stable isotope kinetic study in vivo.
        Circ Cardiovasc Genet. 2012; 5: 35-41
        • Raal F.J.
        • Hovingh G.K.
        • Blom D.
        • et al.
        Long-term treatment with evolocumab added to conventional drug therapy, with or without apheresis, in patients with homozygous familial hypercholesterolaemia: an interim subset analysis of the open-label TAUSSIG study.
        Lancet Diabetes Endocrinol. 2017; 5: 280-290
        • Hartgers M.L.
        • Defesche J.C.
        • Langslet G.
        • et al.
        Alirocumab efficacy in patiens with double heterozygous, compound heterozygous, or homozygous familial hypercholesterolemia.
        J Clin Lipidol. 2018; 12: 390-396
        • Priest J.R.
        • Knowles J.W.
        Standards of evidence and mechanistic inference in Autosomal recessive hypercholesterolemia.
        Arterioscler Thromb Vasc Biol. 2016; 36: 1465-1466