Highlights
- •HeFH and CHL phenotype are common among patients with premature MI.
- •Among patients with early MI, HeFH has more atheromatous burden than CHL phenotype.
- •CHL phenotype is associated with more intense inflammation than HeFH.
- •There is significant overlapping in the clinical diagnosis of HeFH and CHL phenotype.
Background
Heterozygous familial hypercholesterolemia (HeFH) and combined hyperlipidemia (CHL)
phenotype are associated with premature myocardial infarction (MI).
Objective
To assess the prevalence of HeFH and CHL phenotype among young survivors of MI and
compare patients’ characteristics with these 2 lipid disorders.
Methods
We recruited 382 young survivors of MI (≤40 years). Fasting lipids, lipoprotein(a)
[Lp(a)], apolipoprotein A-1, and apolipoprotein B (apoB) levels were determined. Using
the Dutch Lipid Clinic Network (DLCN) algorithm, patients having definite or probable
HeFH were identified. Patients with apoB levels >120 mg/dL and triglyceride levels
>170 mg/dL (1.92 mmol/L) [>90th percentile of 326 age and sex-matched healthy controls]
were classified as having CHL phenotype. Common carotid artery intima-media thickness
(CCA-IMT) was measured by B-mode ultrasonography.
Results
Eighty-one patients (21.2%) had definite/probable HeFH and 62 (16.2%) had CHL phenotype.
Twenty-three patients fulfilled the criteria for both HeFH and CHL phenotype and were
removed from further comparisons. Patients with HeFH (n = 58) had higher levels of
total cholesterol, low-density lipoprotein (LDL)-cholesterol, Lp(a), and apoB, whereas
patients with CHL phenotype (n = 39) had higher levels of triglycerides and lower
high-density lipoprotein (HDL)-cholesterol levels. The prevalence of metabolic syndrome
was higher in patients with CHL phenotype compared to those with HeFH (67.0% vs 16.4%,
P < .001). Patients with HeFH had more extensive coronary artery disease (3-vessel
disease: 36.2% vs 12.8%, P = .011) and greater right CCA-IMT (0.67 ± 0.11 mm vs 0.56 ± 0.09 mm, P < .001) and left CCA-IMT (0.68 ± 0.10 mm vs 0.56 ± 0.08 mm, P < .001) compared to CHL phenotype patients.
Conclusions
Both HeFH and CHL phenotype are common among patients with premature MI. CHL phenotype
compared to HeFH is associated with less atheromatous burden in coronary and carotid
arteries at the time of first MI.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Clinical LipidologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Myocardial infarction in young adults: angiographic characterization, risk factors and prognosis (Coronary Artery Surgery Study Registry).J Am Coll Cardiol. 1995; 26: 654-661
- Circadian pattern of symptoms onset in patients ≤35years presenting with ST-segment elevation acute myocardial infarction.Eur J Intern Med. 2015; 26: 607-610
- Long-term follow-up of coronary artery disease presenting in young adults.J Am Coll Cardiol. 2003; 41: 521-528
- Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction.Nature. 2015; 518: 102-106
- Familial lipoprotein disorders and premature coronary artery disease.Atherosclerosis. 1994; 108: S41-S54
- Prevalence of heterozygous familial hypercholesterolaemia and its impact on long-term prognosis in patients with very early ST-segment elevation myocardial infarction in the era of statins.Atherosclerosis. 2016; 249: 17-21
- Familial-combined hyperlipidaemia in very young myocardial infarction survivors (≤40 years of age).Eur Heart J. 2009; 30: 1073-1079
- Frequency of low-density lipoprotein receptor gene mutations in patients with a clinical diagnosis of familial combined hyperlipidemia in a clinical setting.J Am Coll Cardiol. 2008; 52: 1546-1553
- Prothrombotic genetic risk factors in patients with very early ST-segment elevation myocardial infarction.J Thromb Thrombolysis. 2017; 44: 267-273
- Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung and blood institute scientific statement.Circulation. 2005; 112: 2735-2752
- Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia.Atherosclerosis. 2004; 173: 55-68
- Severe heterozygous familial hypercholesterolemia and risk for cardiovascular disease: a study of a cohort of 14,000 mutation carriers.Atherosclerosis. 2014; 233: 219-223
- Effects of different doses of atorvastatin on human apolipoprotein B-100, B-48, and A-I metabolism.J Lipid Res. 2007; 48: 1746-1753
- Epidemiology of cardiovascular risk factors in Greece: aims, design and baseline characteristics of the ATTICA study.BMC Public Health. 2003; 3: 32
- Familial hypercholesterolemia.in: Scriver C.R. Beaudet A.L. SlyWS Valle D. The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill Companies, New York, NY1995: 1215-1245
- Familial hypercholesterolemia--epidemiology, diagnosis, and screening.Curr Atheroscler Rep. 2015; 17: 482
- Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis.BMJ Open. 2017; 7: e016461
- Familial hypercholesterolemia in very young myocardial infarction.Sci Rep. 2018; 8: 8861
- Prevalence and management of familial hypercholesterolaemia in coronary patients: an analysis of EUROASPIRE IV, a study of the European Society of Cardiology.Atherosclerosis. 2015; 241: 169-175
- Molecular mechanisms, prevalence, and molecular methods for familial combined hyperlipidemia disease: a review.J Cell Biochem. 2018; ([Epub ahead of print])https://doi.org/10.1002/jcb.28311
- Practical guidelines for familial combined hyperlipidemia diagnosis: an up-date.Vasc Health Risk Manag. 2007; 3: 877-886
- Familial combined hyperlipidemia and hyperlipoprotein(a) as phenotypic mimics of familial hypercholesterolemia: Frequencies, associations and predictions.J Clin Lipidol. 2016; 10: 1329-1337
- The genetics of familial combined hyperlipidaemia.Nat Rev Endocrinol. 2012; 8: 352-362
- Familial combined hyperlipidemia: controversial aspects of its diagnosis and pathogenesis.Semin Vasc Med. 2004; 4: 203-209
- Nomogram to diagnose familial combined hyperlipidemia on the basis of results of a 5-year follow-up study.Circulation. 2004; 109: 2980-2985
- Phenotype expression in familial combined hyperlipidemia.Atherosclerosis. 1997; 133: 245-253
- Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia.J Clin Invest. 1973; 52: 1544-1568
- Familial lipoprotein disorders in patients with premature coronary artery disease.Circulation. 1992; 85: 2025-2033
- Tendon xanthomas in familial hypercholesterolemia are associated with cardiovascular risk independently of the low-density lipoprotein receptor gene mutation.Arterioscler Thromb Vasc Biol. 2005; 25: 1960-1965
- Carotid plaque burden as a measure of subclinical coronary artery disease in patients with heterozygous familial hypercholesterolemia.Am J Cardiol. 2013; 111: 1305-1310
- Increased intima-media thickness in familial combined hyperlipidemia associated with apolipoprotein B.Arterioscler Thromb Vasc Biol. 2002; 22: 283-288
- Vascular inflammation and metabolic activity in hematopoietic organs and liver in familial combined hyperlipidemia and heterozygous familial hypercholesterolemia.J Clin Lipidol. 2018; 12: 33-43
- Carotid atherosclerosis and lipoprotein particle subclasses in familial hypercholesterolaemia and familial combined hyperlipidaemia.Nutr Metab Cardiovasc Dis. 2012; 22: 591-597
- Coronary artery disease risk in familial combined hyperlipidemia and familial hypertriglyceridemia: a case-control comparison from the National Heart, Lung, and Blood Institute Family Heart Study.Circulation. 2003; 108: 519-523
Article info
Publication history
Published online: March 11, 2019
Accepted:
February 25,
2019
Received:
October 3,
2018
Identification
Copyright
© 2019 National Lipid Association. All rights reserved.