Original Article| Volume 13, ISSUE 3, P502-508, May 2019

Prevalence of heterozygous familial hypercholesterolemia and combined hyperlipidemia phenotype in very young survivors of myocardial infarction and their association with the severity of atheromatous burden

Published:March 11, 2019DOI:


      • HeFH and CHL phenotype are common among patients with premature MI.
      • Among patients with early MI, HeFH has more atheromatous burden than CHL phenotype.
      • CHL phenotype is associated with more intense inflammation than HeFH.
      • There is significant overlapping in the clinical diagnosis of HeFH and CHL phenotype.


      Heterozygous familial hypercholesterolemia (HeFH) and combined hyperlipidemia (CHL) phenotype are associated with premature myocardial infarction (MI).


      To assess the prevalence of HeFH and CHL phenotype among young survivors of MI and compare patients’ characteristics with these 2 lipid disorders.


      We recruited 382 young survivors of MI (≤40 years). Fasting lipids, lipoprotein(a) [Lp(a)], apolipoprotein A-1, and apolipoprotein B (apoB) levels were determined. Using the Dutch Lipid Clinic Network (DLCN) algorithm, patients having definite or probable HeFH were identified. Patients with apoB levels >120 mg/dL and triglyceride levels >170 mg/dL (1.92 mmol/L) [>90th percentile of 326 age and sex-matched healthy controls] were classified as having CHL phenotype. Common carotid artery intima-media thickness (CCA-IMT) was measured by B-mode ultrasonography.


      Eighty-one patients (21.2%) had definite/probable HeFH and 62 (16.2%) had CHL phenotype. Twenty-three patients fulfilled the criteria for both HeFH and CHL phenotype and were removed from further comparisons. Patients with HeFH (n = 58) had higher levels of total cholesterol, low-density lipoprotein (LDL)-cholesterol, Lp(a), and apoB, whereas patients with CHL phenotype (n = 39) had higher levels of triglycerides and lower high-density lipoprotein (HDL)-cholesterol levels. The prevalence of metabolic syndrome was higher in patients with CHL phenotype compared to those with HeFH (67.0% vs 16.4%, P < .001). Patients with HeFH had more extensive coronary artery disease (3-vessel disease: 36.2% vs 12.8%, P = .011) and greater right CCA-IMT (0.67 ± 0.11 mm vs 0.56 ± 0.09 mm, P < .001) and left CCA-IMT (0.68 ± 0.10 mm vs 0.56 ± 0.08 mm, P < .001) compared to CHL phenotype patients.


      Both HeFH and CHL phenotype are common among patients with premature MI. CHL phenotype compared to HeFH is associated with less atheromatous burden in coronary and carotid arteries at the time of first MI.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Zimmerman F.H.
        • Cameron A.
        • Fisher L.D.
        • Ng G.
        Myocardial infarction in young adults: angiographic characterization, risk factors and prognosis (Coronary Artery Surgery Study Registry).
        J Am Coll Cardiol. 1995; 26: 654-661
        • Rallidis L.S.
        • Triantafyllis A.S.
        • Sakadakis E.A.
        • et al.
        Circadian pattern of symptoms onset in patients ≤35years presenting with ST-segment elevation acute myocardial infarction.
        Eur J Intern Med. 2015; 26: 607-610
        • Cole J.H.
        • Miller J.I.
        • Sperling L.S.
        • Weintraub W.S.
        Long-term follow-up of coronary artery disease presenting in young adults.
        J Am Coll Cardiol. 2003; 41: 521-528
        • Do R.
        • Stitziel N.O.
        • Won H.H.
        • et al.
        Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction.
        Nature. 2015; 518: 102-106
        • Schaefer E.J.
        • Genest Jr., J.J.
        • Ordovas J.M.
        • Salem D.N.
        • Wilson P.W.
        Familial lipoprotein disorders and premature coronary artery disease.
        Atherosclerosis. 1994; 108: S41-S54
        • Rallidis L.
        • Triantafyllis A.
        • Tsirebolos G.
        • et al.
        Prevalence of heterozygous familial hypercholesterolaemia and its impact on long-term prognosis in patients with very early ST-segment elevation myocardial infarction in the era of statins.
        Atherosclerosis. 2016; 249: 17-21
        • Wiesbauer F.
        • Blessberger H.
        • Azar D.
        • et al.
        Familial-combined hyperlipidaemia in very young myocardial infarction survivors (≤40 years of age).
        Eur Heart J. 2009; 30: 1073-1079
        • Civeira F.
        • Jarauta E.
        • Cenarro A.
        • et al.
        Frequency of low-density lipoprotein receptor gene mutations in patients with a clinical diagnosis of familial combined hyperlipidemia in a clinical setting.
        J Am Coll Cardiol. 2008; 52: 1546-1553
        • Rallidis L.S.
        • Gialeraki A.
        • Tsirebolos G.
        • Tsalavoutas S.
        • Rallidi M.
        • Iliodromitis E.
        Prothrombotic genetic risk factors in patients with very early ST-segment elevation myocardial infarction.
        J Thromb Thrombolysis. 2017; 44: 267-273
        • Grundy S.M.
        • Cleeman J.I.
        • Daniels S.R.
        • et al.
        Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung and blood institute scientific statement.
        Circulation. 2005; 112: 2735-2752
        • Civeira F.
        • International Panel on Management of Familial Hypercholesterolemia
        Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia.
        Atherosclerosis. 2004; 173: 55-68
        • Besseling J.
        • Kindt I.
        • Hof M.
        • Kastelein J.J.
        • Hutten B.A.
        • Hovingh G.K.
        Severe heterozygous familial hypercholesterolemia and risk for cardiovascular disease: a study of a cohort of 14,000 mutation carriers.
        Atherosclerosis. 2014; 233: 219-223
        • Lamon-Fava S.
        • Diffenderfer M.R.
        • Barrett P.H.
        • et al.
        Effects of different doses of atorvastatin on human apolipoprotein B-100, B-48, and A-I metabolism.
        J Lipid Res. 2007; 48: 1746-1753
        • Pitsavos C.
        • Panagiotakos D.B.
        • Chrysohoou C.
        • Stefanadis C.
        Epidemiology of cardiovascular risk factors in Greece: aims, design and baseline characteristics of the ATTICA study.
        BMC Public Health. 2003; 3: 32
        • Goldstein J.L.
        • Hobbs H.H.
        • MS B.
        Familial hypercholesterolemia.
        in: Scriver C.R. Beaudet A.L. SlyWS Valle D. The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill Companies, New York, NY1995: 1215-1245
        • Singh S.
        • Bittner V.
        Familial hypercholesterolemia--epidemiology, diagnosis, and screening.
        Curr Atheroscler Rep. 2015; 17: 482
        • Akioyamen L.E.
        • Genest J.
        • Shan S.D.
        • et al.
        Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis.
        BMJ Open. 2017; 7: e016461
        • Li S.
        • Zhang H.W.
        • Guo Y.L.
        • et al.
        Familial hypercholesterolemia in very young myocardial infarction.
        Sci Rep. 2018; 8: 8861
        • De Backer G.
        • Besseling J.
        • Chapman J.
        • et al.
        Prevalence and management of familial hypercholesterolaemia in coronary patients: an analysis of EUROASPIRE IV, a study of the European Society of Cardiology.
        Atherosclerosis. 2015; 241: 169-175
        • Taghizadeh E.
        • Mardani R.
        • Rostami D.
        • Taghizadeh H.
        • Bazireh H.
        • Hayat S.M.G.
        Molecular mechanisms, prevalence, and molecular methods for familial combined hyperlipidemia disease: a review.
        J Cell Biochem. 2018; ([Epub ahead of print])
        • Gaddi A.
        • Cicero A.F.
        • Odoo F.O.
        • Poli A.A.
        • Paoletti R.
        • Atherosclerosis and Metabolic Diseases Study Group
        Practical guidelines for familial combined hyperlipidemia diagnosis: an up-date.
        Vasc Health Risk Manag. 2007; 3: 877-886
        • Ellis K.L.
        • Pang J.
        • Chan D.C.
        • et al.
        Familial combined hyperlipidemia and hyperlipoprotein(a) as phenotypic mimics of familial hypercholesterolemia: Frequencies, associations and predictions.
        J Clin Lipidol. 2016; 10: 1329-1337
        • Brouwers M.C.
        • van Greevenbroek M.M.
        • Stehouwer C.D.
        • de Graaf J.
        • Stalenhoef A.F.
        The genetics of familial combined hyperlipidaemia.
        Nat Rev Endocrinol. 2012; 8: 352-362
        • Aguilar Salinas C.A.
        • Zamora M.
        • Gómez-Díaz R.A.
        • Mehta R.
        • Gómez Pérez F.J.
        • Rull J.A.
        Familial combined hyperlipidemia: controversial aspects of its diagnosis and pathogenesis.
        Semin Vasc Med. 2004; 4: 203-209
        • Veerkamp M.J.
        • de Graaf J.
        • Hendriks J.C.
        • Demacker P.N.
        • Stalenhoef A.F.
        Nomogram to diagnose familial combined hyperlipidemia on the basis of results of a 5-year follow-up study.
        Circulation. 2004; 109: 2980-2985
        • Porkka K.V.
        • Nuotio I.
        • Pajukanta P.
        • et al.
        Phenotype expression in familial combined hyperlipidemia.
        Atherosclerosis. 1997; 133: 245-253
        • Goldstein J.L.
        • Schrott H.G.
        • Hazzard W.R.
        • Bierman E.L.
        • Motulsky A.G.
        Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia.
        J Clin Invest. 1973; 52: 1544-1568
        • Genest Jr., J.J.
        • Martin-Munley S.S.
        • McNamara J.R.
        • et al.
        Familial lipoprotein disorders in patients with premature coronary artery disease.
        Circulation. 1992; 85: 2025-2033
        • Civeira F.
        • Castillo S.
        • Alonso R.
        • et al.
        Tendon xanthomas in familial hypercholesterolemia are associated with cardiovascular risk independently of the low-density lipoprotein receptor gene mutation.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1960-1965
        • ten Kate G.L.
        • ten Kate G.J.
        • van den Oord S.C.
        • et al.
        Carotid plaque burden as a measure of subclinical coronary artery disease in patients with heterozygous familial hypercholesterolemia.
        Am J Cardiol. 2013; 111: 1305-1310
        • Keulen E.T.
        • Kruijshoop M.
        • Schaper N.C.
        • Hoeks A.P.
        • de Bruin T.W.
        Increased intima-media thickness in familial combined hyperlipidemia associated with apolipoprotein B.
        Arterioscler Thromb Vasc Biol. 2002; 22: 283-288
        • Toutouzas K.
        • Skoumas J.
        • Koutagiar I.
        • et al.
        Vascular inflammation and metabolic activity in hematopoietic organs and liver in familial combined hyperlipidemia and heterozygous familial hypercholesterolemia.
        J Clin Lipidol. 2018; 12: 33-43
        • Jarauta E.
        • Mateo-Gallego R.
        • Gilabert R.
        • et al.
        Carotid atherosclerosis and lipoprotein particle subclasses in familial hypercholesterolaemia and familial combined hyperlipidaemia.
        Nutr Metab Cardiovasc Dis. 2012; 22: 591-597
        • Hopkins P.N.
        • Heiss G.
        • Ellison R.C.
        • et al.
        Coronary artery disease risk in familial combined hyperlipidemia and familial hypertriglyceridemia: a case-control comparison from the National Heart, Lung, and Blood Institute Family Heart Study.
        Circulation. 2003; 108: 519-523