Advertisement
NLA Scientific Statement| Volume 13, ISSUE 6, P860-872, November 2019

Download started.

Ok

National Lipid Association Scientific Statement on the use of icosapent ethyl in statin-treated patients with elevated triglycerides and high or very-high ASCVD risk

Published:November 02, 2019DOI:https://doi.org/10.1016/j.jacl.2019.10.014

      Highlights

      • Hypertriglyceridemia is associated with increased ASCVD risk.
      • Long-chain omega-3 fatty acids lower circulating TG.
      • Benefits of low-dose omega-3 have been controversial.
      • In REDUCE-IT, icosapent ethyl demonstrated 25% net ASCVD risk reduction.
      • NLA: use icosapent ethyl in selected high TG ASCVD and/or diabetic patients on statin.

      Abstract

      Representatives from the National Lipid Association (NLA) participated in the development of the 2018 American Heart Association/American College of Cardiology/Multisociety Guideline on the Management of Blood Cholesterol, which reaffirmed that lifestyle changes and statin treatment are therapeutic cornerstones for atherosclerotic cardiovascular disease (ASCVD) risk reduction. It also updated prior recommendations to incorporate newer data demonstrating ASCVD risk reduction with ezetimibe and proprotein convertase subtilisin kexin type 9 inhibitors as adjuncts to statin therapy for patients at high and very-high ASCVD risk. The 2018 Guideline was finalized shortly before full results were available from a randomized, placebo-controlled cardiovascular outcomes trial [Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial (REDUCE-IT)] that examined the effects of icosapent ethyl (IPE) 4 g/d on major adverse cardiovascular events in selected high- or very high-risk, statin-treated patients with elevated triglycerides. The primary outcome variable of first major adverse cardiovascular event (cardiovascular death, myocardial infarction, stroke, coronary revascularization and hospitalization for unstable angina) was reduced by 25% (95% confidence interval 17%–32%, P < .001). REDUCE-IT served as the primary basis for the NLA's review of evidence for the use of IPE for ASCVD risk reduction. Based on this review, the NLA position is that for patients aged ≥45 years with clinical ASCVD, or aged ≥50 years with diabetes mellitus requiring medication plus ≥1 additional risk factor, with fasting triglycerides 135 to 499 mg/dL on high-intensity or maximally tolerated statin therapy (±ezetimibe), treatment with IPE is recommended for ASCVD risk reduction (evidence rating: class I; evidence level: B-R).

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Del Gobbo L.C.
        • Imamura F.
        • Aslibekyan S.
        • et al.
        Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies.
        JAMA Intern Med. 2016; 176: 1155-1166
        • de Goede J.
        • Geleijnse J.M.
        • Boer J.M.
        • Kromhout D.
        • Verschuren W.M.
        Marine (n-3) fatty acids, fish consumption, and the 10-year risk of fatal and nonfatal coronary heart disease in a large population of Dutch adults with low fish intake.
        J Nutr. 2010; 140: 1023-1028
        • Alexander D.D.
        • Miller P.E.
        • Van Elswyk M.E.
        • Kuratko C.N.
        • Bylsma L.C.
        A meta-analysis of randomized controlled trials and prospective cohort studies of eicosapentaenoic and docosahexaenoic long-chain omega-3 fatty acids and coronary heart disease risk.
        Mayo Clin Proc. 2017; 92: 15-29
        • Rizos E.C.
        • Ntzani E.E.
        • Bika E.
        • Kostapanos M.S.
        • Elisaf M.S.
        Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis.
        JAMA. 2012; 308: 1024-1033
        • Yokoyama M.
        • Origasa H.
        • Matsuzaki M.
        • et al.
        Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.
        Lancet. 2007; 369: 1090-1098
      1. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico.
        Lancet. 1999; 354: 447-455
        • Origin Trial Investigators
        • Bosch J.
        • Gerstein H.C.
        • et al.
        n-3 Fatty acids and cardiovascular outcomes in patients with dysglycemia.
        N Engl J Med. 2012; 367: 309-318
        • Roncaglioni M.C.
        • Tombesi M.
        • Avanzini F.
        • et al.
        • Risk and Prevention Study Collaborative Group
        n-3 Fatty acids in patients with multiple cardiovascular risk factors.
        N Engl J Med. 2013; 368: 1800-1808
        • Maki K.C.
        • Dicklin M.R.
        Omega-3 fatty acid supplementation and cardiovascular disease risk: glass half full or time to nail the coffin shut?.
        Nutrients. 2018; 10
        • Skulas-Ray A.C.
        • Wilson P.W.F.
        • Harris W.S.
        • et al.
        Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association.
        Circulation. 2019; 140: e673-e691
        • Saito Y.
        • Yokoyama M.
        • Origasa H.
        • et al.
        Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS).
        Atherosclerosis. 2008; 200: 135-140
        • Maki K.C.
        • Guyton J.R.
        • Orringer C.E.
        • Hamilton-Craig I.
        • Alexander D.D.
        • Davidson M.H.
        Triglyceride-lowering therapies reduce cardiovascular disease event risk in subjects with hypertriglyceridemia.
        J Clin Lipidol. 2016; 10: 905-914
        • Lee M.
        • Saver J.L.
        • Towfighi A.
        • Chow J.
        • Ovbiagele B.
        Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis.
        Atherosclerosis. 2011; 217: 492-498
        • Sacks F.M.
        • Carey V.J.
        • Fruchart J.C.
        Combination lipid therapy in type 2 diabetes.
        N Engl J Med. 2010; 363 (author reply 4–5): 692-694
        • Bhatt D.L.
        • Steg P.G.
        • Miller M.
        • et al.
        cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia.
        N Engl J Med. 2019; 380: 11-22
        • Grundy S.M.
        • Stone N.J.
        • Bailey A.L.
        • et al.
        2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines.
        J Am Coll Cardiol. 2019; 73: e285-e350
        • Robinson J.G.
        • Huijgen R.
        • Ray K.
        • Persons J.
        • Kastelein J.J.
        • Pencina M.J.
        Determining when to add nonstatin therapy: a quantitative approach.
        J Am Coll Cardiol. 2016; 68: 2412-2421
        • Hokanson J.E.
        • Austin M.A.
        Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies.
        J Cardiovasc Risk. 1996; 3: 213-219
        • Nordestgaard B.G.
        • Benn M.
        • Schnohr P.
        • Tybjaerg-Hansen A.
        Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women.
        JAMA. 2007; 298: 299-308
        • Freiberg J.J.
        • Tybjaerg-Hansen A.
        • Jensen J.S.
        • Nordestgaard B.G.
        Nonfasting triglycerides and risk of ischemic stroke in the general population.
        JAMA. 2008; 300: 2142-2152
        • Jorgensen A.B.
        • Frikke-Schmidt R.
        • Nordestgaard B.G.
        • Tybjaerg-Hansen A.
        Loss-of-function mutations in APOC3 and risk of ischemic vascular disease.
        N Engl J Med. 2014; 371: 32-41
        • Varbo A.
        • Benn M.
        • Tybjaerg-Hansen A.
        • Jorgensen A.B.
        • Frikke-Schmidt R.
        • Nordestgaard B.G.
        Remnant cholesterol as a causal risk factor for ischemic heart disease.
        J Am Coll Cardiol. 2013; 61: 427-436
        • Nordestgaard B.G.
        Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology.
        Circ Res. 2016; 118: 547-563
        • Antonios N.
        • Angiolillo D.J.
        • Silliman S.
        Hypertriglyceridemia and ischemic stroke.
        Eur Neurol. 2008; 60: 269-278
        • Rochlani Y.
        • Pothineni N.V.
        • Kovelamudi S.
        • Mehta J.L.
        Metabolic syndrome: pathophysiology, management, and modulation by natural compounds.
        Ther Adv Cardiovasc Dis. 2017; 11: 215-225
        • Alberti K.G.
        • Eckel R.H.
        • Grundy S.M.
        • et al.
        Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity.
        Circulation. 2009; 120: 1640-1645
        • Jacobson T.A.
        • Ito M.K.
        • Maki K.C.
        • et al.
        National lipid association recommendations for patient-centered management of dyslipidemia: part 1–full report.
        J Clin Lipidol. 2015; 9: 129-169
        • Jacobson T.A.
        • Maki K.C.
        • Orringer C.E.
        • et al.
        National Lipid Association recommendations for patient-centered management of dyslipidemia: part 2.
        J Clin Lipidol. 2015; 9: S1-S122.e1
        • Berglund L.
        • Brunzell J.D.
        • Goldberg A.C.
        • Goldberg I.J.
        • Stalenhoef A.
        Treatment options for hypertriglyceridemia: from risk reduction to pancreatitis.
        Best Pract Res Clin Endocrinol Metab. 2014; 28: 423-437
        • Maki K.C.
        • Bays H.E.
        • Dicklin M.R.
        Treatment options for the management of hypertriglyceridemia: strategies based on the best-available evidence.
        J Clin Lipidol. 2012; 6: 413-426
        • Crosby J.
        • Peloso G.M.
        • Auer P.L.
        • et al.
        • TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute
        Loss-of-function mutations in APOC3, triglycerides, and coronary disease.
        N Engl J Med. 2014; 371: 22-31
        • Nordestgaard B.G.
        • Varbo A.
        Triglycerides and cardiovascular disease.
        Lancet. 2014; 384: 626-635
        • Rosenson R.S.
        • Davidson M.H.
        • Hirsh B.J.
        • Kathiresan S.
        • Gaudet D.
        Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease.
        J Am Coll Cardiol. 2014; 64: 2525-2540
        • Jorgensen A.B.
        • Frikke-Schmidt R.
        • West A.S.
        • Grande P.
        • Nordestgaard B.G.
        • Tybjaerg-Hansen A.
        Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction.
        Eur Heart J. 2013; 34: 1826-1833
        • Stitziel N.O.
        • Stirrups K.E.
        • Masca N.G.
        • et al.
        • Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators
        Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease.
        N Engl J Med. 2016; 374: 1134-1144
        • Dewey F.E.
        • Gusarova V.
        • Dunbar R.L.
        • et al.
        Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease.
        N Engl J Med. 2017; 377: 211-221
        • Sarwar N.
        • Sandhu M.S.
        • Ricketts S.L.
        • et al.
        • Triglyceride Coronary Disease Genetics Consortium and Emerging Risk Factors Collaboration
        Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies.
        Lancet. 2010; 375: 1634-1639
        • Ference B.A.
        • Kastelein J.J.P.
        • Ray K.K.
        • et al.
        Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease.
        JAMA. 2019; 321: 364-373
        • Miller M.
        • Cannon C.P.
        • Murphy S.A.
        • et al.
        Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial.
        J Am Coll Cardiol. 2008; 51: 724-730
        • Kastelein J.J.
        • van der Steeg W.A.
        • Holme I.
        • et al.
        Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment.
        Circulation. 2008; 117: 3002-3009
        • Faergeman O.
        • Holme I.
        • Fayyad R.
        • et al.
        Plasma triglycerides and cardiovascular events in the treating to new targets and incremental decrease in end-points through aggressive lipid lowering trials of statins in patients with coronary artery disease.
        Am J Cardiol. 2009; 104: 459-463
        • Boden W.E.
        • Probstfield J.L.
        • Anderson T.
        • et al.
        • AIM-HIGH Investigators
        Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy.
        N Engl J Med. 2011; 365: 2255-2267
        • Landray M.J.
        • Haynes R.
        • Hopewell J.C.
        • et al.
        • Group HPS2-THRIVE Collaborative Group
        Effects of extended-release niacin with laropiprant in high-risk patients.
        N Engl J Med. 2014; 371: 203-212
        • Ginsberg H.N.
        • Elam M.B.
        • Lovato L.C.
        • et al.
        • ACCORD Study Group
        Effects of combination lipid therapy in type 2 diabetes mellitus.
        N Engl J Med. 2010; 362: 1563-1574
        • Jun M.
        • Foote C.
        • Lv J.
        • et al.
        Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis.
        Lancet. 2010; 375: 1875-1884
        • Siscovick D.S.
        • Barringer T.A.
        • Fretts A.M.
        • et al.
        Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease: a science advisory from the American Heart Association.
        Circulation. 2017; 135: e867-e884
        • Tavazzi L.
        • Maggioni A.P.
        • Marchioli R.
        • et al.
        Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial.
        Lancet. 2008; 372: 1223-1230
        • Aung T.
        • Halsey J.
        • Kromhout D.
        • et al.
        Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77917 individuals.
        JAMA Cardiol. 2018; 3: 225-234
        • Maki K.C.
        • Palacios O.M.
        • Bell M.
        • Toth P.P.
        Use of supplemental long-chain omega-3 fatty acids and risk for cardiac death: an updated meta-analysis and review of research gaps.
        J Clin Lipidol. 2017; 11: 1152-11560 e2
        • Bowman L.
        • Mafham M.
        • Wallendszus K.
        • et al.
        • ASCEND Study Collaborative Group
        Effects of n-3 fatty acid supplements in diabetes mellitus.
        N Engl J Med. 2018; 379: 1540-1550
        • Manson J.E.
        • Cook N.R.
        • Lee I.M.
        • et al.
        Marine n-3 fatty acids and prevention of cardiovascular disease and cancer.
        N Engl J Med. 2019; 380: 23-32
        • Hu Y.
        • Hu F.B.
        • Manson J.E.
        Marine omega-3 supplementation and cardiovascular disease: an updated meta-analysis of 13 randomized controlled trials involving 127 477 participants.
        J Am Heart Assoc. 2019; 8: e013543
        • Bhatt D.L.
        • Steg P.G.
        • Miller M.
        • et al.
        Effects of icosapent ethyl on total ischemic events: from REDUCE-IT.
        J Am Coll Cardiol. 2019; 73: 2791-2802
        • Marston N.A.
        • Giugliano R.P.
        • Im K.
        • et al.
        Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-egression analysis of randomized controlled trials.
        Circulation. 2019; 140: 1308-1317
        • Ganda O.P.
        • Bhatt D.L.
        • Mason R.P.
        • Miller M.
        • Boden W.E.
        Unmet need for adjunctive dyslipidemia therapy in hypertriglyceridemia management.
        J Am Coll Cardiol. 2018; 72: 330-343
        • Preston Mason R.
        New insights into mechanisms of action for omega-3 fatty acids in atherothrombotic cardiovascular disease.
        Curr Atheroscler Rep. 2019; 21: 2
        • Mozaffarian D.
        • Prineas R.J.
        • Stein P.K.
        • Siscovick D.S.
        Dietary fish and n-3 fatty acid intake and cardiac electrocardiographic parameters in humans.
        J Am Coll Cardiol. 2006; 48: 478-484
        • Mozaffarian D.
        • Wu J.H.
        Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events.
        J Am Coll Cardiol. 2011; 58: 2047-2067
        • Itakura H.
        • Yokoyama M.
        • Matsuzaki M.
        • et al.
        Relationships between plasma fatty acid composition and coronary artery disease.
        J Atheroscler Thromb. 2011; 18: 99-107
        • Otsuka R.
        • Tange C.
        • Nishita Y.
        • et al.
        Fish and meat intake, serum eicosapentaenoic acid and docosahexaenoic acid levels, and mortality in community-dwelling japanese older persons.
        Int J Environ Res Public Health. 2019; 16
        • Papanikolaou Y.
        • Brooks J.
        • Reider C.
        • Fulgoni 3rd, V.L.
        U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003-2008.
        Nutr J. 2014; 13: 31
        • American Diabetes Association
        • Mach F.
        • Baigent C.
        • Catapano A.L.
        • et al.
        2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk.
        Eur Heart J. 2019; : ehz455https://doi.org/10.1093/eurheartj/ehz455
        • Wilson D.P.
        • Jacobson T.A.
        • Jones P.H.
        • et al.
        Use of lipoprotein(a) in clinical practice: a biomarker whose time has come. a scientific statement from the National Lipid Association.
        J Clin Lipidol. 2019; 13: 374-392
        • Halperin J.L.
        • Levine G.N.
        • Al-Khatib S.M.
        • et al.
        Further evolution of the ACC/AHA clinical practice guideline recommendation classification system: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines.
        Circulation. 2016; 133: 1426-1428
        • Haslam A.
        • Prasad V.
        Confirmatory trials for drugs approved on a single trial.
        Circ Cardiovasc Qual Outcomes. 2019; 12: e005494
        • Kastelein J.J.P.
        • Stroes E.S.G.
        FISHing for the miracle of eicosapentaenoic acid.
        N Engl J Med. 2019; 380: 89-90
        • Fruchart J.C.
        Pemafibrate (K-877), a novel selective peroxisome proliferator-activated receptor alpha modulator for management of atherogenic dyslipidaemia.
        Cardiovasc Diabetol. 2017; 16: 124
        • Nicholls S.J.
        • Lincoff A.M.
        • Bash D.
        • et al.
        Assessment of omega-3 carboxylic acids in statin-treated patients with high levels of triglycerides and low levels of high-density lipoprotein cholesterol: rationale and design of the STRENGTH trial.
        Clin Cardiol. 2018; 41: 1281-1288
        • Pradhan A.D.
        • Paynter N.P.
        • Everett B.M.
        • et al.
        Rationale and design of the pemafibrate to reduce cardiovascular outcomes by reducing triglycerides in patients with diabetes (PROMINENT) study.
        Am Heart J. 2018; 206: 80-93