Highlights
- •This first trans-ancestry GWAS of lipids in pregnant women identified 4 known loci.
- •Loci in CELSR2 and APOE were associated with levels of total cholesterol and LDL.
- •Loci in CETP and ABCA1 approached the genome-wide signification with HDL levels.
- •Local replication analysis underlined the need for studies in diverse populations.
- •Colocalization analysis identified CELSR2 as a candidate causal gene.
Background
Blood lipids during pregnancy are associated with cardiovascular diseases and adverse
pregnancy outcomes. Genome-wide association studies (GWAS) in predominantly male European
ancestry populations have identified genetic loci associated with blood lipid levels.
However, the genetic architecture of blood lipids in pregnant women remains poorly
understood.
Objective
Our goal was to identify genetic loci associated with blood lipid levels among pregnant
women from diverse ancestry groups and to evaluate whether previously known lipid
loci in predominantly European adults are transferable to pregnant women.
Methods
The trans-ancestry GWAS were conducted on serum levels of total cholesterol, high-density lipoprotein
cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides during
first trimester among pregnant women from four population groups (608 European-, 623
African-, 552 Hispanic- and 235 East Asian-Americans) recruited in the NICHD Fetal
Growth Studies cohort. The four GWAS summary statistics were combined using trans-ancestry
meta-analysis approaches that account for genetic heterogeneity among populations.
Results
Loci in CELSR2 and APOE were genome-wide significantly associated (p-value < 5×10−8) with total cholesterol and LDL levels. Loci near CETP and ABCA1 approached genome-wide significant association with HDL (p-value = 2.97×10−7 and 9.71×10−8, respectively). Less than 20% of previously known adult lipid loci were transferable
to pregnant women.
Conclusion
This trans-ancestry GWAS meta-analysis in pregnant women identified associations that concur
with four known adult lipid loci. Limited replication of known lipid-loci from predominantly
European study populations to pregnant women underlines the need for genomic studies
of lipids in ancestrally diverse pregnant women.
Clinical Trial Registration
ClinicalTrials.gov, NCT00912132.
Keywords
Abbreviations:
BF (Bayes Factor), eQTL (expression quantitative trait loci), GWAS (Genome-wide association studies), HDL (high-density lipoprotein cholesterol), LD (linkage disequilibrium), LDL (low-density lipoprotein cholesterol), meQTL (methylation quantitative loci), PCs (Principal components), SNPs (single nucleotide polymorphisms), s.d. (standard deviation)To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Clinical LipidologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Cross-sectional and longitudinal lipid determination studies in pregnant women reveal an association between increased maternal LDL cholesterol concentrations and reduced human umbilical vein relaxation.Placenta. 2015; 36 (Epub 2015/06/10PubMed PMID: 26055528): 895-902https://doi.org/10.1016/j.placenta.2015.05.012
- Maternal Serum Lipid Trajectories and Association with Pregnancy Loss and Length of Gestation.Am J Perinatol. 2019; (Epub 2019/06/04PubMed PMID: 31154664)https://doi.org/10.1055/s-0039-1689000
- Dyslipidemia in pregnancy and maternal-fetal outcome.Minerva Ginecol. 2019; 71 (Epub 2018/10/16PubMed PMID: 30318877): 155-162https://doi.org/10.23736/S0026-4784.18.04330-7
- Value of first-trimester serum lipid profile in early prediction of preeclampsia and its severity: A prospective cohort study.Hypertens Pregnancy. 2016; 35 (Epub 2016/02/02PubMed PMID: 26829675): 73-81https://doi.org/10.3109/10641955.2015.1115060
- Maternal preconception lipid profile and gestational lipid changes in relation to birthweight outcomes.Sci Rep. 2020; 10 (Epub 2020/01/30PubMed PMID: 31992758PubMed Central PMCID: PMC6987205): 1374https://doi.org/10.1038/s41598-019-57373-z
- Maternal anthropometric and metabolic factors in the first half of pregnancy and risk of neonatal macrosomia in term pregnancies. A prospective study.Eur J Endocrinol. 2005; 153 (Epub 2005/12/03PubMed PMID: 16322395): 887-894https://doi.org/10.1530/eje.1.02034
- Maternal triglyceride levels during early pregnancy are associated with birth weight and postnatal growth.J Pediatr. 2011; 159 (e1Epub 2011/06/28PubMed PMID: 21705016): 736-742https://doi.org/10.1016/j.jpeds.2011.05.001
- Association of maternal serum lipids at late gestation with the risk of neonatal macrosomia in women without diabetes mellitus.Lipids Health Dis. 2018; 17 (Epub 2018/04/13PubMed PMID: 29642923PubMed Central PMCID: PMC5896067): 78https://doi.org/10.1186/s12944-018-0707-7
- Race-ethnic differences in the associations of maternal lipid trait genetic risk scores with longitudinal fetal growth.J Clin Lipidol. 2019; 13 (Epub 2019/08/07PubMed PMID: 31383602PubMed Central PMCID: PMC6885118): 821-831https://doi.org/10.1016/j.jacl.2019.06.007
- Maternal hypercholesterolemia during pregnancy influences the later development of atherosclerosis: clinical and pathogenic implications.Eur Heart J. 2001; 22 (Epub 2001/01/03PubMed PMID: 11133201): 4-9https://doi.org/10.1053/euhj.2000.2147
- A derangement of the maternal lipid profile is associated with an elevated risk of congenital heart disease in the offspring.Nutr Metab Cardiovasc Dis. 2012; 22 (Epub 2010/12/28PubMed PMID: 21186113): 477-485https://doi.org/10.1016/j.numecd.2010.07.016
- Metabolic profile in early pregnancy is associated with offspring adiposity at 4 years of age: the Rhea pregnancy cohort Crete, Greece.PLoS One. 2015; 10 (Epub 2015/05/15PubMed PMID: 25970502PubMed Central PMCID: PMC4430416)e0126327https://doi.org/10.1371/journal.pone.0126327
- Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions.J Clin Invest. 1997; 100 (Epub 1998/02/12PubMed PMID: 9389731PubMed Central PMCID: PMC508471): 2680-2690https://doi.org/10.1172/JCI119813
- Leptin gene polymorphism (rs7799039; G2548A) is associated with changes in serum lipid concentrations during pregnancy: a prospective cohort study.Eur J Nutr. 2020; 59 (Epub 2019/07/12PubMed PMID: 31292750): 1999-2009https://doi.org/10.1007/s00394-019-02049-7
- The impact of maternal obesity and gestational weight gain on early and mid-pregnancy lipid profiles.Obesity (Silver Spring). 2014; 22 (Epub 2013/07/16PubMed PMID: 23853155PubMed Central PMCID: PMC4362720): 932-938https://doi.org/10.1002/oby.20576
- Ethnic differences in maternal total cholesterol and triglyceride levels during pregnancy: the contribution of demographics, behavioural factors and clinical characteristics.Eur J Clin Nutr. 2011; 65 (Epub 2011/01/20PubMed PMID: 21245878): 580-589https://doi.org/10.1038/ejcn.2010.282
- Heritability of metabolic syndrome traits in a large population-based sample.J Lipid Res. 2013; 54 (Epub 2013/08/07PubMed PMID: 23918046PubMed Central PMCID: PMC3770104): 2914-2923https://doi.org/10.1194/jlr.P041673
- The sex-specific genetic architecture of quantitative traits in humans.Nat Genet. 2006; 38 (Epub 2006/01/24PubMed PMID: 16429159): 218-222https://doi.org/10.1038/ng1726
- Genetic and environmental influences on factors associated with cardiovascular disease and the metabolic syndrome.J Lipid Res. 2009; 50 (Epub 2009/04/18PubMed PMID: 19372593PubMed Central PMCID: PMC2724778): 1917-1926https://doi.org/10.1194/jlr.P900033-JLR200
- Heritability of cardiovascular and personality traits in 6,148 Sardinians.PLoS Genet. 2006; 2 (Epub 2006/08/29PubMed PMID: 16934002PubMed Central PMCID: PMC1557782)https://doi.org/10.1371/journal.pgen.0020132
- Heritability of the metabolic syndrome and its components in the Tehran Lipid and Glucose Study (TLGS).Genet Res (Camb). 2012; 94 (Epub 2013/02/05PubMed PMID: 23374242): 331-337https://doi.org/10.1017/S001667231200050X
- A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study.BMC Med Genet. 2007; (Suppl 1:S17. Epub 2007/10/16PubMed PMID: 17903299PubMed Central PMCID: PMC1995614)https://doi.org/10.1186/1471-2350-8-s1-s17
- Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.Am J Epidemiol. 2019; 188 (Epub 2019/01/31PubMed PMID: 30698716PubMed Central PMCID: PMC6545280): 1033-1054https://doi.org/10.1093/aje/kwz005
- Genetics of blood lipids among ∼300,000 multi-ethnic participants of the Million Veteran Program.Nat Genet. 2018; 50 (Epub 2018/10/03PubMed PMID: 30275531PubMed Central PMCID: PMC6521726): 1514-1523https://doi.org/10.1038/s41588-018-0222-9
- Discovery and refinement of loci associated with lipid levels.Nat Genet. 2013; 45 (Epub 2013/10/08PubMed PMID: 24097068PubMed Central PMCID: PMC3838666): 1274-1283https://doi.org/10.1038/ng.2797
- Exome-wide association study of plasma lipids in >300,000 individuals.Nat Genet. 2017; 49 (Epub 2017/10/31PubMed PMID: 29083408PubMed Central PMCID: PMC5709146): 1758-1766https://doi.org/10.1038/ng.3977
- Biological, clinical and population relevance of 95 loci for blood lipids.Nature. 2010; 466 (Epub 2010/08/06PubMed PMID: 20686565PubMed Central PMCID: PMC3039276): 707-713https://doi.org/10.1038/nature09270
- Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects, and tissue-specific enrichment of eQTLs.Sci Rep. 2016; 6 (Epub 2016/01/20PubMed PMID: 26780889PubMed Central PMCID: PMC4726092): 19429https://doi.org/10.1038/srep19429
- Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease.Nat Genet. 2017; 49 (Epub 2017/10/31PubMed PMID: 29083407PubMed Central PMCID: PMC5899829): 1722-1730https://doi.org/10.1038/ng.3978
- Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes.Diabetologia. 2013; 56 (Epub 2012/11/20PubMed PMID: 23160641PubMed Central PMCID: PMC3536959): 298-310https://doi.org/10.1007/s00125-012-2756-1
- Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci.Am J Hum Genet. 2012; 91 (Epub 2012/10/16PubMed PMID: 23063622PubMed Central PMCID: PMC3487124): 823-838https://doi.org/10.1016/j.ajhg.2012.08.032
- Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis.PLoS Genet. 2009; 5 (Epub 2009/11/26PubMed PMID: 19936222PubMed Central PMCID: PMC2777390)e1000730https://doi.org/10.1371/journal.pgen.1000730
- Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks.Am J Hum Genet. 2014; 94 (Epub 2014/02/11PubMed PMID: 24507774PubMed Central PMCID: PMC3928662): 223-232https://doi.org/10.1016/j.ajhg.2014.01.009
- The transferability of lipid loci across African, Asian and European cohorts.Nat Commun. 2019; 10 (Epub 2019/09/26PubMed PMID: 31551420PubMed Central PMCID: PMC6760173): 4330https://doi.org/10.1038/s41467-019-12026-7
- Genetic risk scores in lipid disorders.Curr Opin Cardiol. 2019; 34 (Epub 2019/06/07PubMed PMID: 31169601): 406-412https://doi.org/10.1097/HCO.0000000000000623
- Development of genome-wide polygenic risk scores for lipid traits and clinical applications for dyslipidemia, subclinical atherosclerosis, and diabetes cardiovascular complications among East Asians.Genome Med. 2021; 13 (Epub 2021/02/21PubMed PMID: 33608049PubMed Central PMCID: PMC7893928): 29https://doi.org/10.1186/s13073-021-00831-z
- Sex differences in lipid and lipoprotein metabolism.Mol Metab. 2018; (Epub 2018/06/03PubMed PMID: 29858147)https://doi.org/10.1016/j.molmet.2018.05.008
- Sex differences in lipid and lipoprotein metabolism: it's not just about sex hormones.J Clin Endocrinol Metab. 2011; 96 (Epub 2011/04/09PubMed PMID: 21474685PubMed Central PMCID: PMC3070248): 885-893https://doi.org/10.1210/jc.2010-2061
- Gender differences in genetic risk profiles for cardiovascular disease.PLoS One. 2008; 3 (Epub 2008/11/01PubMed PMID: 18974842PubMed Central PMCID: PMC2574036): e3615https://doi.org/10.1371/journal.pone.0003615
- Gene by sex interaction in the etiology of coronary heart disease and the preceding metabolic syndrome.Nutr Metab Cardiovasc Dis. 2007; 17 (Epub 2007/02/20PubMed PMID: 17306735): 153-161https://doi.org/10.1016/j.numecd.2006.01.005
- Sex-specific genetic effects across biomarkers.Eur J Hum Genet. 2021; 29 (Epub 20200901PubMed PMID: 32873964PubMed Central PMCID: PMC7794464): 154-163https://doi.org/10.1038/s41431-020-00712-w
- Genetic and environmental determinants of variation in the plasma lipidome of older Australian twins.eLife. 2020; 9: e58954https://doi.org/10.7554/eLife.58954
- Cohort Profile: NICHD Fetal Growth Studies-Singletons and Twins.Int J Epidemiol. 2018; 47 (25-lEpub 2017/10/13PubMed PMID: 29025016PubMed Central PMCID: PMC5837516)https://doi.org/10.1093/ije/dyx161
- Maternal dyslipidemia during early pregnancy and epigenetic ageing of the placenta.Epigenetics. 2019; 14 (Epub 2019/06/11PubMed PMID: 31179827PubMed Central PMCID: PMC6691987): 1030-1039https://doi.org/10.1080/15592294.2019.1629234
- Early pregnancy dyslipidemia is associated with placental DNA methylation at loci relevant for cardiometabolic diseases.Epigenomics. 2020; 12 (Epub 2020/07/18PubMed PMID: 32677467PubMed Central PMCID: PMC7466909): 921-934https://doi.org/10.2217/epi-2019-0293
- Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.Clin Chem. 1972; 18 (Epub 1972/06/01PubMed PMID: 4337382): 499-502
- Trans-ethnic meta-analysis of genome-wide association studies identifies maternal ITPR1 as a novel locus influencing fetal growth during sensitive periods in pregnancy.PLoS Genet. 2020; 16 (Epub 2020/05/15PubMed PMID: 32407400PubMed Central PMCID: PMC7252673)e1008747https://doi.org/10.1371/journal.pgen.1008747
- MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes.Genet Epidemiol. 2010; 34 (Epub 2010/11/09PubMed PMID: 21058334PubMed Central PMCID: PMC3175618): 816-834https://doi.org/10.1002/gepi.20533
- A novel random effect model for GWAS meta-analysis and its application to trans-ethnic meta-analysis.Biometrics. 2016; 72 (Epub 2016/02/27PubMed PMID: 26916671PubMed Central PMCID: PMC4996751): 945-954https://doi.org/10.1111/biom.12481
- LocusZoom: regional visualization of genome-wide association scan results.Bioinformatics. 2010; 26 (Epub 2010/07/17PubMed PMID: 20634204PubMed Central PMCID: PMC2935401): 2336-2337https://doi.org/10.1093/bioinformatics/btq419
Tange O. GNU Parallel 20200622 ('Floyd'). Zenodo. 2020:zenodo.3903853. doi: http://doi.org/10.5281/zenodo.3903853.
- GWAMA: software for genome-wide association meta-analysis.BMC Bioinformatics. 2010; 11 (Epub 2010/06/01PubMed PMID: 20509871PubMed Central PMCID: PMC2893603): 288https://doi.org/10.1186/1471-2105-11-288
- Evaluation of Genome Wide Association Study Associated Type 2 Diabetes Susceptibility Loci in Sub Saharan Africans.Front Genet. 2015; 6 (Epub 2015/12/05PubMed PMID: 26635871PubMed Central PMCID: PMC4656823): 335https://doi.org/10.3389/fgene.2015.00335
- HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.Nucleic Acids Res. 2012; 40 (Epub 2011/11/09PubMed PMID: 22064851PubMed Central PMCID: PMC3245002): D930-D934https://doi.org/10.1093/nar/gkr917
- Replication of genome-wide association studies (GWAS) loci for fasting plasma glucose in African-Americans.Diabetologia. 2011; 54 (Epub 2010/12/29PubMed PMID: 21188353PubMed Central PMCID: PMC3052446): 783-788https://doi.org/10.1007/s00125-010-2002-7
- Haploview: analysis and visualization of LD and haplotype maps.Bioinformatics. 2005; 21 (Epub 2004/08/07PubMed PMID: 15297300): 263-265https://doi.org/10.1093/bioinformatics/bth457
- Bayesian refinement of association signals for 14 loci in 3 common diseases.Nat Genet. 2012; 44 (Epub 2012/10/30PubMed PMID: 23104008PubMed Central PMCID: PMC3791416): 1294-1301https://doi.org/10.1038/ng.2435
- HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease.Nucleic Acids Res. 2016; 44 (Epub 2015/12/15PubMed PMID: 26657631PubMed Central PMCID: PMC4702929): D877-D881https://doi.org/10.1093/nar/gkv1340
- Systematic identification of genetic influences on methylation across the human life course.Genome Biol. 2016; 17 (Epub 2016/04/03PubMed PMID: 27036880PubMed Central PMCID: PMC4818469): 61https://doi.org/10.1186/s13059-016-0926-z
- The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.Science. 2015; 348: 648-660
- Bayesian test for colocalisation between pairs of genetic association studies using summary statistics.PLoS Genet. 2014; 10 (Epub 2014/05/17PubMed PMID: 24830394PubMed Central PMCID: PMC4022491)e1004383https://doi.org/10.1371/journal.pgen.1004383
- The GTEx Consortium atlas of genetic regulatory effects across human tissues.Science. 2020; 369 (Epub 2020/09/12PubMed PMID: 32913098PubMed Central PMCID: PMC7737656): 1318-1330https://doi.org/10.1126/science.aaz1776
- Abundant associations with gene expression complicate GWAS follow-up.Nat Genet. 2019; 51 (Epub 2019/05/03PubMed PMID: 31043754PubMed Central PMCID: PMC6904208): 768-769https://doi.org/10.1038/s41588-019-0404-0
- Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight.Nat Commun. 2019; 10 (Epub 2019/04/25PubMed PMID: 31015461PubMed Central PMCID: PMC6478731): 1893https://doi.org/10.1038/s41467-019-09671-3
- Variable DNA methylation in neonates mediates the association between prenatal smoking and birth weight.Philos Trans R Soc Lond B Biol Sci. 2019; 374 (Epub 2019/04/11PubMed PMID: 30966880PubMed Central PMCID: PMC6460077)20180120https://doi.org/10.1098/rstb.2018.0120
- Contribution of Rare and Common Genetic Variants to Plasma Lipid Levels and Carotid Stiffness and Geometry: A Substudy of the Paris Prospective Study 3.Circ Cardiovasc Genet. 2015; 8 (Epub 2015/07/15PubMed PMID: 26160806): 628-636https://doi.org/10.1161/CIRCGENETICS.114.000979
- Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese.Nat Commun. 2015; 6 (Epub 2015/12/23PubMed PMID: 26690388PubMed Central PMCID: PMC4703860): 10206https://doi.org/10.1038/ncomms10206
- Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits.Nat Genet. 2011; 43 (Epub 2011/09/13PubMed PMID: 21909109): 990-995https://doi.org/10.1038/ng.939
- High density GWAS for LDL cholesterol in African Americans using electronic medical records reveals a strong protective variant in APOE.Clin Transl Sci. 2012; 5 (Epub 2012/10/17PubMed PMID: 23067351PubMed Central PMCID: PMC3521536): 394-399https://doi.org/10.1111/j.1752-8062.2012.00446.x
- Genetic architecture of human plasma lipidome and its link to cardiovascular disease.Nat Commun. 2019; 10 (Epub 2019/09/26PubMed PMID: 31551469PubMed Central PMCID: PMC6760179): 4329https://doi.org/10.1038/s41467-019-11954-8
- Gene-based association study for lipid traits in diverse cohorts implicates BACE1 and SIDT2 regulation in triglyceride levels.PeerJ. 2018; 6 (Epub 2018/02/07PubMed PMID: 29404214PubMed Central PMCID: PMC5793713): e4314https://doi.org/10.7717/peerj.4314
- The impact of adjusting for baseline in pharmacogenomic genome-wide association studies of quantitative change.NPJ Genom Med. 2020; 5 (Epub 2020/01/24PubMed PMID: 31969989PubMed Central PMCID: PMC6965183): 1https://doi.org/10.1038/s41525-019-0109-4
- Genetically regulated gene expression underlies lipid traits in Hispanic cohorts.PLoS One. 2019; 14 (Epub 2019/08/09PubMed PMID: 31393916PubMed Central PMCID: PMC6687110)e0220827https://doi.org/10.1371/journal.pone.0220827
- HDL-cholesterol concentration in pregnant Chinese Han women of late second trimester associated with genetic variants in CETP, ABCA1, APOC3, and GALNT2.Oncotarget. 2017; 8 (Epub 2017/09/17PubMed PMID: 28915626PubMed Central PMCID: PMC5593597): 56737-56746https://doi.org/10.18632/oncotarget.18128
- The association between six genetic variants and blood lipid levels in pregnant Chinese Han women.J Clin Lipidol. 2017; 11 (Epub 2017/07/02PubMed PMID: 28666712): 938-944https://doi.org/10.1016/j.jacl.2017.06.006
- Cholesteryl ester and apolipoprotein E transfer between human high density lipoproteins and chylomicrons.Biochim Biophys Acta. 1983; 750 (Epub 1983/02/07PubMed PMID: 6860692): 411-417https://doi.org/10.1016/0005-2760(83)90047-4
- Molecular interactions between apoE and ABCA1: impact on apoE lipidation.J Lipid Res. 2004; 45 (Epub 2004/02/03PubMed PMID: 14754908): 839-848https://doi.org/10.1194/jlr.M300418-JLR200
- Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency.Nat Genet. 1999; 22 (Epub 1999/08/04PubMed PMID: 10431236): 336-345https://doi.org/10.1038/11905
- Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux.Lancet. 1999; 354 (Epub 1999/10/26PubMed PMID: 10533863): 1341-1346https://doi.org/10.1016/s0140-6736(99)07026-9
- Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules.Nat Struct Mol Biol. 2007; 14 (Epub 2007/01/24PubMed PMID: 17237796): 106-113https://doi.org/10.1038/nsmb1197
- Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins.Nature. 1989; 342 (Epub 1989/11/23PubMed PMID: 2586614): 448-451https://doi.org/10.1038/342448a0
- Mapping the genetic architecture of gene expression in human liver.PLoS Biol. 2008; 6 (Epub 2008/05/09PubMed PMID: 18462017PubMed Central PMCID: PMC2365981): e107https://doi.org/10.1371/journal.pbio.0060107
- Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans.Nat Genet. 2008; 40 (Epub 2008/01/15PubMed PMID: 18193044PubMed Central PMCID: PMC2682493): 189-197https://doi.org/10.1038/ng.75
- CELSR2 deficiency suppresses lipid accumulation in hepatocyte by impairing the UPR and elevating ROS level.FASEB J. 2021; 35 (Epub 2021/09/04PubMed PMID: 34478580): e21908https://doi.org/10.1096/fj.202100786RR
- Chapter 7 - Triglyceride metabolism in pregnancy.in: Makowski GS Advances in Clinical Chemistry. 55. Elsevier, 2011: 133-153
Article info
Publication history
Published online: November 16, 2022
Accepted:
October 18,
2022
Received:
June 17,
2022
Identification
Copyright
Published by Elsevier Inc. on behalf of National Lipid Association.