Advertisement
Original Research| Volume 17, ISSUE 1, P168-180, January 2023

Download started.

Ok

Genomic study of maternal lipid traits in early pregnancy concurs with four known adult lipid loci

  • Marion Ouidir
    Affiliations
    Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
    Search for articles by this author
  • Suvo Chatterjee
    Affiliations
    Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
    Search for articles by this author
  • Jing Wu
    Affiliations
    Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
    Search for articles by this author
  • Fasil Tekola-Ayele
    Correspondence
    Correspondence: Fasil Tekola-Ayele, PhD, Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Drive, Room 3204, Bethesda, MD 20892-7004
    Affiliations
    Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
    Search for articles by this author
Published:November 16, 2022DOI:https://doi.org/10.1016/j.jacl.2022.10.013

      Highlights

      • This first trans-ancestry GWAS of lipids in pregnant women identified 4 known loci.
      • Loci in CELSR2 and APOE were associated with levels of total cholesterol and LDL.
      • Loci in CETP and ABCA1 approached the genome-wide signification with HDL levels.
      • Local replication analysis underlined the need for studies in diverse populations.
      • Colocalization analysis identified CELSR2 as a candidate causal gene.

      Background

      Blood lipids during pregnancy are associated with cardiovascular diseases and adverse pregnancy outcomes. Genome-wide association studies (GWAS) in predominantly male European ancestry populations have identified genetic loci associated with blood lipid levels. However, the genetic architecture of blood lipids in pregnant women remains poorly understood.

      Objective

      Our goal was to identify genetic loci associated with blood lipid levels among pregnant women from diverse ancestry groups and to evaluate whether previously known lipid loci in predominantly European adults are transferable to pregnant women.

      Methods

      The trans-ancestry GWAS were conducted on serum levels of total cholesterol, high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides during first trimester among pregnant women from four population groups (608 European-, 623 African-, 552 Hispanic- and 235 East Asian-Americans) recruited in the NICHD Fetal Growth Studies cohort. The four GWAS summary statistics were combined using trans-ancestry meta-analysis approaches that account for genetic heterogeneity among populations.

      Results

      Loci in CELSR2 and APOE were genome-wide significantly associated (p-value < 5×10−8) with total cholesterol and LDL levels. Loci near CETP and ABCA1 approached genome-wide significant association with HDL (p-value = 2.97×10−7 and 9.71×10−8, respectively). Less than 20% of previously known adult lipid loci were transferable to pregnant women.

      Conclusion

      This trans-ancestry GWAS meta-analysis in pregnant women identified associations that concur with four known adult lipid loci. Limited replication of known lipid-loci from predominantly European study populations to pregnant women underlines the need for genomic studies of lipids in ancestrally diverse pregnant women.

      Clinical Trial Registration

      ClinicalTrials.gov, NCT00912132.

      Keywords

      Abbreviations:

      BF (Bayes Factor), eQTL (expression quantitative trait loci), GWAS (Genome-wide association studies), HDL (high-density lipoprotein cholesterol), LD (linkage disequilibrium), LDL (low-density lipoprotein cholesterol), meQTL (methylation quantitative loci), PCs (Principal components), SNPs (single nucleotide polymorphisms), s.d. (standard deviation)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leiva A
        • Salsoso R
        • Saez T
        • Sanhueza C
        • Pardo F
        • Sobrevia L.
        Cross-sectional and longitudinal lipid determination studies in pregnant women reveal an association between increased maternal LDL cholesterol concentrations and reduced human umbilical vein relaxation.
        Placenta. 2015; 36 (Epub 2015/06/10PubMed PMID: 26055528): 895-902https://doi.org/10.1016/j.placenta.2015.05.012
        • Grantz KL
        • Elmi A
        • Pugh SJ
        • Catov J
        • Sjaarda L
        • Albert PS.
        Maternal Serum Lipid Trajectories and Association with Pregnancy Loss and Length of Gestation.
        Am J Perinatol. 2019; (Epub 2019/06/04PubMed PMID: 31154664)https://doi.org/10.1055/s-0039-1689000
        • Nasioudis D
        • Doulaveris G
        • Kanninen TT.
        Dyslipidemia in pregnancy and maternal-fetal outcome.
        Minerva Ginecol. 2019; 71 (Epub 2018/10/16PubMed PMID: 30318877): 155-162https://doi.org/10.23736/S0026-4784.18.04330-7
        • El Khouly NI
        • Sanad ZF
        • Saleh SA
        • Shabana AA
        • Elhalaby AF
        • Badr EE.
        Value of first-trimester serum lipid profile in early prediction of preeclampsia and its severity: A prospective cohort study.
        Hypertens Pregnancy. 2016; 35 (Epub 2016/02/02PubMed PMID: 26829675): 73-81https://doi.org/10.3109/10641955.2015.1115060
        • Bever AM
        • Mumford SL
        • Schisterman EF
        • Sjaarda L
        • Perkins NJ
        • Gerlanc N
        • et al.
        Maternal preconception lipid profile and gestational lipid changes in relation to birthweight outcomes.
        Sci Rep. 2020; 10 (Epub 2020/01/30PubMed PMID: 31992758PubMed Central PMCID: PMC6987205): 1374https://doi.org/10.1038/s41598-019-57373-z
        • Clausen T
        • Burski TK
        • Oyen N
        • Godang K
        • Bollerslev J
        • Henriksen T.
        Maternal anthropometric and metabolic factors in the first half of pregnancy and risk of neonatal macrosomia in term pregnancies. A prospective study.
        Eur J Endocrinol. 2005; 153 (Epub 2005/12/03PubMed PMID: 16322395): 887-894https://doi.org/10.1530/eje.1.02034
        • Vrijkotte TG
        • Algera SJ
        • Brouwer IA
        • van Eijsden M
        • Twickler MB.
        Maternal triglyceride levels during early pregnancy are associated with birth weight and postnatal growth.
        J Pediatr. 2011; 159 (e1Epub 2011/06/28PubMed PMID: 21705016): 736-742https://doi.org/10.1016/j.jpeds.2011.05.001
        • Wang X
        • Guan Q
        • Zhao J
        • Yang F
        • Yuan Z
        • Yin Y
        • et al.
        Association of maternal serum lipids at late gestation with the risk of neonatal macrosomia in women without diabetes mellitus.
        Lipids Health Dis. 2018; 17 (Epub 2018/04/13PubMed PMID: 29642923PubMed Central PMCID: PMC5896067): 78https://doi.org/10.1186/s12944-018-0707-7
        • Ouidir M
        • Mendola P
        • Workalemahu T
        • Grewal J
        • Grantz KL
        • Zhang C
        • et al.
        Race-ethnic differences in the associations of maternal lipid trait genetic risk scores with longitudinal fetal growth.
        J Clin Lipidol. 2019; 13 (Epub 2019/08/07PubMed PMID: 31383602PubMed Central PMCID: PMC6885118): 821-831https://doi.org/10.1016/j.jacl.2019.06.007
        • Napoli C
        • Palinski W.
        Maternal hypercholesterolemia during pregnancy influences the later development of atherosclerosis: clinical and pathogenic implications.
        Eur Heart J. 2001; 22 (Epub 2001/01/03PubMed PMID: 11133201): 4-9https://doi.org/10.1053/euhj.2000.2147
        • Smedts HP
        • van Uitert EM
        • Valkenburg O
        • Laven JS
        • Eijkemans MJ
        • Lindemans J
        • et al.
        A derangement of the maternal lipid profile is associated with an elevated risk of congenital heart disease in the offspring.
        Nutr Metab Cardiovasc Dis. 2012; 22 (Epub 2010/12/28PubMed PMID: 21186113): 477-485https://doi.org/10.1016/j.numecd.2010.07.016
        • Daraki V
        • Georgiou V
        • Papavasiliou S
        • Chalkiadaki G
        • Karahaliou M
        • Koinaki S
        • et al.
        Metabolic profile in early pregnancy is associated with offspring adiposity at 4 years of age: the Rhea pregnancy cohort Crete, Greece.
        PLoS One. 2015; 10 (Epub 2015/05/15PubMed PMID: 25970502PubMed Central PMCID: PMC4430416)e0126327https://doi.org/10.1371/journal.pone.0126327
        • Napoli C
        • D'Armiento FP
        • Mancini FP
        • Postiglione A
        • Witztum JL
        • Palumbo G
        • et al.
        Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions.
        J Clin Invest. 1997; 100 (Epub 1998/02/12PubMed PMID: 9389731PubMed Central PMCID: PMC508471): 2680-2690https://doi.org/10.1172/JCI119813
        • Farias DR
        • Alves-Santos NH
        • Eshriqui I
        • Martins MC
        • Struchiner CJ
        • Lepsch J
        • et al.
        Leptin gene polymorphism (rs7799039; G2548A) is associated with changes in serum lipid concentrations during pregnancy: a prospective cohort study.
        Eur J Nutr. 2020; 59 (Epub 2019/07/12PubMed PMID: 31292750): 1999-2009https://doi.org/10.1007/s00394-019-02049-7
        • Scifres CM
        • Catov JM
        • Simhan HN.
        The impact of maternal obesity and gestational weight gain on early and mid-pregnancy lipid profiles.
        Obesity (Silver Spring). 2014; 22 (Epub 2013/07/16PubMed PMID: 23853155PubMed Central PMCID: PMC4362720): 932-938https://doi.org/10.1002/oby.20576
        • Schreuder YJ
        • Hutten BA
        • van Eijsden M
        • Jansen EH
        • Vissers MN
        • Twickler MT
        • et al.
        Ethnic differences in maternal total cholesterol and triglyceride levels during pregnancy: the contribution of demographics, behavioural factors and clinical characteristics.
        Eur J Clin Nutr. 2011; 65 (Epub 2011/01/20PubMed PMID: 21245878): 580-589https://doi.org/10.1038/ejcn.2010.282
        • van Dongen J
        • Willemsen G
        • Chen WM
        • de Geus EJ
        • Boomsma DI.
        Heritability of metabolic syndrome traits in a large population-based sample.
        J Lipid Res. 2013; 54 (Epub 2013/08/07PubMed PMID: 23918046PubMed Central PMCID: PMC3770104): 2914-2923https://doi.org/10.1194/jlr.P041673
        • Weiss LA
        • Pan L
        • Abney M
        • Ober C.
        The sex-specific genetic architecture of quantitative traits in humans.
        Nat Genet. 2006; 38 (Epub 2006/01/24PubMed PMID: 16429159): 218-222https://doi.org/10.1038/ng1726
        • Elder SJ
        • Lichtenstein AH
        • Pittas AG
        • Roberts SB
        • Fuss PJ
        • Greenberg AS
        • et al.
        Genetic and environmental influences on factors associated with cardiovascular disease and the metabolic syndrome.
        J Lipid Res. 2009; 50 (Epub 2009/04/18PubMed PMID: 19372593PubMed Central PMCID: PMC2724778): 1917-1926https://doi.org/10.1194/jlr.P900033-JLR200
        • Pilia G
        • Chen WM
        • Scuteri A
        • Orru M
        • Albai G
        • Dei M
        • et al.
        Heritability of cardiovascular and personality traits in 6,148 Sardinians.
        PLoS Genet. 2006; 2 (Epub 2006/08/29PubMed PMID: 16934002PubMed Central PMCID: PMC1557782)https://doi.org/10.1371/journal.pgen.0020132
        • Zarkesh M
        • Daneshpour MS
        • Faam B
        • Fallah MS
        • Hosseinzadeh N
        • Guity K
        • et al.
        Heritability of the metabolic syndrome and its components in the Tehran Lipid and Glucose Study (TLGS).
        Genet Res (Camb). 2012; 94 (Epub 2013/02/05PubMed PMID: 23374242): 331-337https://doi.org/10.1017/S001667231200050X
        • Kathiresan S
        • Manning AK
        • Demissie S
        • D'Agostino RB
        • Surti A
        • Guiducci C
        • et al.
        A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study.
        BMC Med Genet. 2007; (Suppl 1:S17. Epub 2007/10/16PubMed PMID: 17903299PubMed Central PMCID: PMC1995614)https://doi.org/10.1186/1471-2350-8-s1-s17
        • de Vries PS
        • Brown MR
        • Bentley AR
        • Sung YJ
        • Winkler TW
        • Ntalla I
        • et al.
        Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.
        Am J Epidemiol. 2019; 188 (Epub 2019/01/31PubMed PMID: 30698716PubMed Central PMCID: PMC6545280): 1033-1054https://doi.org/10.1093/aje/kwz005
        • Klarin D
        • Damrauer SM
        • Cho K
        • Sun YV
        • Teslovich TM
        • Honerlaw J
        • et al.
        Genetics of blood lipids among ∼300,000 multi-ethnic participants of the Million Veteran Program.
        Nat Genet. 2018; 50 (Epub 2018/10/03PubMed PMID: 30275531PubMed Central PMCID: PMC6521726): 1514-1523https://doi.org/10.1038/s41588-018-0222-9
        • Willer CJ
        • Schmidt EM
        • Sengupta S
        • Peloso GM
        • Gustafsson S
        • Kanoni S
        • et al.
        Discovery and refinement of loci associated with lipid levels.
        Nat Genet. 2013; 45 (Epub 2013/10/08PubMed PMID: 24097068PubMed Central PMCID: PMC3838666): 1274-1283https://doi.org/10.1038/ng.2797
        • Liu DJ
        • Peloso GM
        • Yu H
        • Butterworth AS
        • Wang X
        • Mahajan A
        • et al.
        Exome-wide association study of plasma lipids in >300,000 individuals.
        Nat Genet. 2017; 49 (Epub 2017/10/31PubMed PMID: 29083408PubMed Central PMCID: PMC5709146): 1758-1766https://doi.org/10.1038/ng.3977
        • Teslovich TM
        • Musunuru K
        • Smith AV
        • Edmondson AC
        • Stylianou IM
        • Koseki M
        • et al.
        Biological, clinical and population relevance of 95 loci for blood lipids.
        Nature. 2010; 466 (Epub 2010/08/06PubMed PMID: 20686565PubMed Central PMCID: PMC3039276): 707-713https://doi.org/10.1038/nature09270
        • Below JE
        • Parra EJ
        • Gamazon ER
        • Torres J
        • Krithika S
        • Candille S
        • et al.
        Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects, and tissue-specific enrichment of eQTLs.
        Sci Rep. 2016; 6 (Epub 2016/01/20PubMed PMID: 26780889PubMed Central PMCID: PMC4726092): 19429https://doi.org/10.1038/srep19429
        • Lu X
        • Peloso GM
        • Liu DJ
        • Wu Y
        • Zhang H
        • Zhou W
        • et al.
        Exome chip meta-analysis identifies novel loci and East Asian-specific coding variants that contribute to lipid levels and coronary artery disease.
        Nat Genet. 2017; 49 (Epub 2017/10/31PubMed PMID: 29083407PubMed Central PMCID: PMC5899829): 1722-1730https://doi.org/10.1038/ng.3978
        • Albrechtsen A
        • Grarup N
        • Li Y
        • Sparso T
        • Tian G
        • Cao H
        • et al.
        Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes.
        Diabetologia. 2013; 56 (Epub 2012/11/20PubMed PMID: 23160641PubMed Central PMCID: PMC3536959): 298-310https://doi.org/10.1007/s00125-012-2756-1
        • Asselbergs FW
        • Guo Y
        • van Iperen EP
        • Sivapalaratnam S
        • Tragante V
        • Lanktree MB
        • et al.
        Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci.
        Am J Hum Genet. 2012; 91 (Epub 2012/10/16PubMed PMID: 23063622PubMed Central PMCID: PMC3487124): 823-838https://doi.org/10.1016/j.ajhg.2012.08.032
        • Chasman DI
        • Pare G
        • Mora S
        • Hopewell JC
        • Peloso G
        • Clarke R
        • et al.
        Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis.
        PLoS Genet. 2009; 5 (Epub 2009/11/26PubMed PMID: 19936222PubMed Central PMCID: PMC2777390)e1000730https://doi.org/10.1371/journal.pgen.1000730
        • Peloso GM
        • Auer PL
        • Bis JC
        • Voorman A
        • Morrison AC
        • Stitziel NO
        • et al.
        Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks.
        Am J Hum Genet. 2014; 94 (Epub 2014/02/11PubMed PMID: 24507774PubMed Central PMCID: PMC3928662): 223-232https://doi.org/10.1016/j.ajhg.2014.01.009
        • Kuchenbaecker K
        • Telkar N
        • Reiker T
        • Walters RG
        • Lin K
        • Eriksson A
        • et al.
        The transferability of lipid loci across African, Asian and European cohorts.
        Nat Commun. 2019; 10 (Epub 2019/09/26PubMed PMID: 31551420PubMed Central PMCID: PMC6760173): 4330https://doi.org/10.1038/s41467-019-12026-7
        • Wierzbicki AS
        • Reynolds TM.
        Genetic risk scores in lipid disorders.
        Curr Opin Cardiol. 2019; 34 (Epub 2019/06/07PubMed PMID: 31169601): 406-412https://doi.org/10.1097/HCO.0000000000000623
        • Tam CHT
        • Lim CKP
        • Luk AOY
        • Ng ACW
        • Lee HM
        • Jiang G
        • et al.
        Development of genome-wide polygenic risk scores for lipid traits and clinical applications for dyslipidemia, subclinical atherosclerosis, and diabetes cardiovascular complications among East Asians.
        Genome Med. 2021; 13 (Epub 2021/02/21PubMed PMID: 33608049PubMed Central PMCID: PMC7893928): 29https://doi.org/10.1186/s13073-021-00831-z
        • Palmisano BT
        • Zhu L
        • Eckel RH
        • Stafford JM.
        Sex differences in lipid and lipoprotein metabolism.
        Mol Metab. 2018; (Epub 2018/06/03PubMed PMID: 29858147)https://doi.org/10.1016/j.molmet.2018.05.008
        • Wang X
        • Magkos F
        • Mittendorfer B.
        Sex differences in lipid and lipoprotein metabolism: it's not just about sex hormones.
        J Clin Endocrinol Metab. 2011; 96 (Epub 2011/04/09PubMed PMID: 21474685PubMed Central PMCID: PMC3070248): 885-893https://doi.org/10.1210/jc.2010-2061
        • Silander K
        • Alanne M
        • Kristiansson K
        • Saarela O
        • Ripatti S
        • Auro K
        • et al.
        Gender differences in genetic risk profiles for cardiovascular disease.
        PLoS One. 2008; 3 (Epub 2008/11/01PubMed PMID: 18974842PubMed Central PMCID: PMC2574036): e3615https://doi.org/10.1371/journal.pone.0003615
        • McCarthy JJ.
        Gene by sex interaction in the etiology of coronary heart disease and the preceding metabolic syndrome.
        Nutr Metab Cardiovasc Dis. 2007; 17 (Epub 2007/02/20PubMed PMID: 17306735): 153-161https://doi.org/10.1016/j.numecd.2006.01.005
        • Flynn E
        • Tanigawa Y
        • Rodriguez F
        • Altman RB
        • Sinnott-Armstrong N
        • Rivas MA.
        Sex-specific genetic effects across biomarkers.
        Eur J Hum Genet. 2021; 29 (Epub 20200901PubMed PMID: 32873964PubMed Central PMCID: PMC7794464): 154-163https://doi.org/10.1038/s41431-020-00712-w
        • Wong MWK
        • Thalamuthu A
        • Braidy N
        • Mather KA
        • Liu Y
        • Ciobanu L
        • et al.
        Genetic and environmental determinants of variation in the plasma lipidome of older Australian twins.
        eLife. 2020; 9: e58954https://doi.org/10.7554/eLife.58954
        • Grewal J
        • Grantz KL
        • Zhang C
        • Sciscione A
        • Wing DA
        • Grobman WA
        • et al.
        Cohort Profile: NICHD Fetal Growth Studies-Singletons and Twins.
        Int J Epidemiol. 2018; 47 (25-lEpub 2017/10/13PubMed PMID: 29025016PubMed Central PMCID: PMC5837516)https://doi.org/10.1093/ije/dyx161
        • Shrestha D
        • Workalemahu T
        • Tekola-Ayele F.
        Maternal dyslipidemia during early pregnancy and epigenetic ageing of the placenta.
        Epigenetics. 2019; 14 (Epub 2019/06/11PubMed PMID: 31179827PubMed Central PMCID: PMC6691987): 1030-1039https://doi.org/10.1080/15592294.2019.1629234
        • Ouidir M
        • Zeng X
        • Workalemahu T
        • Shrestha D
        • Grantz KL
        • Mendola P
        • et al.
        Early pregnancy dyslipidemia is associated with placental DNA methylation at loci relevant for cardiometabolic diseases.
        Epigenomics. 2020; 12 (Epub 2020/07/18PubMed PMID: 32677467PubMed Central PMCID: PMC7466909): 921-934https://doi.org/10.2217/epi-2019-0293
        • Friedewald WT
        • Levy RI
        • Fredrickson DS.
        Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.
        Clin Chem. 1972; 18 (Epub 1972/06/01PubMed PMID: 4337382): 499-502
        • Tekola-Ayele F
        • Zhang C
        • Wu J
        • Grantz KL
        • Rahman ML
        • Shrestha D
        • et al.
        Trans-ethnic meta-analysis of genome-wide association studies identifies maternal ITPR1 as a novel locus influencing fetal growth during sensitive periods in pregnancy.
        PLoS Genet. 2020; 16 (Epub 2020/05/15PubMed PMID: 32407400PubMed Central PMCID: PMC7252673)e1008747https://doi.org/10.1371/journal.pgen.1008747
        • Li Y
        • Willer CJ
        • Ding J
        • Scheet P
        • Abecasis GR.
        MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes.
        Genet Epidemiol. 2010; 34 (Epub 2010/11/09PubMed PMID: 21058334PubMed Central PMCID: PMC3175618): 816-834https://doi.org/10.1002/gepi.20533
        • Shi J
        • Lee S.
        A novel random effect model for GWAS meta-analysis and its application to trans-ethnic meta-analysis.
        Biometrics. 2016; 72 (Epub 2016/02/27PubMed PMID: 26916671PubMed Central PMCID: PMC4996751): 945-954https://doi.org/10.1111/biom.12481
        • Pruim RJ
        • Welch RP
        • Sanna S
        • Teslovich TM
        • Chines PS
        • Gliedt TP
        • et al.
        LocusZoom: regional visualization of genome-wide association scan results.
        Bioinformatics. 2010; 26 (Epub 2010/07/17PubMed PMID: 20634204PubMed Central PMCID: PMC2935401): 2336-2337https://doi.org/10.1093/bioinformatics/btq419
      1. Tange O. GNU Parallel 20200622 ('Floyd'). Zenodo. 2020:zenodo.3903853. doi: http://doi.org/10.5281/zenodo.3903853.

        • Magi R
        • Morris AP.
        GWAMA: software for genome-wide association meta-analysis.
        BMC Bioinformatics. 2010; 11 (Epub 2010/06/01PubMed PMID: 20509871PubMed Central PMCID: PMC2893603): 288https://doi.org/10.1186/1471-2105-11-288
        • Adeyemo AA
        • Tekola-Ayele F
        • Doumatey AP
        • Bentley AR
        • Chen G
        • Huang H
        • et al.
        Evaluation of Genome Wide Association Study Associated Type 2 Diabetes Susceptibility Loci in Sub Saharan Africans.
        Front Genet. 2015; 6 (Epub 2015/12/05PubMed PMID: 26635871PubMed Central PMCID: PMC4656823): 335https://doi.org/10.3389/fgene.2015.00335
        • Ward LD
        • Kellis M.
        HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.
        Nucleic Acids Res. 2012; 40 (Epub 2011/11/09PubMed PMID: 22064851PubMed Central PMCID: PMC3245002): D930-D934https://doi.org/10.1093/nar/gkr917
        • Ramos E
        • Chen G
        • Shriner D
        • Doumatey A
        • Gerry NP
        • Herbert A
        • et al.
        Replication of genome-wide association studies (GWAS) loci for fasting plasma glucose in African-Americans.
        Diabetologia. 2011; 54 (Epub 2010/12/29PubMed PMID: 21188353PubMed Central PMCID: PMC3052446): 783-788https://doi.org/10.1007/s00125-010-2002-7
        • Barrett JC
        • Fry B
        • Maller J
        • Daly MJ.
        Haploview: analysis and visualization of LD and haplotype maps.
        Bioinformatics. 2005; 21 (Epub 2004/08/07PubMed PMID: 15297300): 263-265https://doi.org/10.1093/bioinformatics/bth457
        • Wellcome Trust Case Control C
        • Maller JB
        • McVean G
        • Byrnes J
        • Vukcevic D
        • Palin K
        • et al.
        Bayesian refinement of association signals for 14 loci in 3 common diseases.
        Nat Genet. 2012; 44 (Epub 2012/10/30PubMed PMID: 23104008PubMed Central PMCID: PMC3791416): 1294-1301https://doi.org/10.1038/ng.2435
        • Ward LD
        • Kellis M.
        HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease.
        Nucleic Acids Res. 2016; 44 (Epub 2015/12/15PubMed PMID: 26657631PubMed Central PMCID: PMC4702929): D877-D881https://doi.org/10.1093/nar/gkv1340
        • Gaunt TR
        • Shihab HA
        • Hemani G
        • Min JL
        • Woodward G
        • Lyttleton O
        • et al.
        Systematic identification of genetic influences on methylation across the human life course.
        Genome Biol. 2016; 17 (Epub 2016/04/03PubMed PMID: 27036880PubMed Central PMCID: PMC4818469): 61https://doi.org/10.1186/s13059-016-0926-z
        • Consortium G.
        The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.
        Science. 2015; 348: 648-660
        • Giambartolomei C
        • Vukcevic D
        • Schadt EE
        • Franke L
        • Hingorani AD
        • Wallace C
        • et al.
        Bayesian test for colocalisation between pairs of genetic association studies using summary statistics.
        PLoS Genet. 2014; 10 (Epub 2014/05/17PubMed PMID: 24830394PubMed Central PMCID: PMC4022491)e1004383https://doi.org/10.1371/journal.pgen.1004383
        • Consortium G.
        The GTEx Consortium atlas of genetic regulatory effects across human tissues.
        Science. 2020; 369 (Epub 2020/09/12PubMed PMID: 32913098PubMed Central PMCID: PMC7737656): 1318-1330https://doi.org/10.1126/science.aaz1776
        • Liu B
        • Gloudemans MJ
        • Rao AS
        • Ingelsson E
        • Montgomery SB.
        Abundant associations with gene expression complicate GWAS follow-up.
        Nat Genet. 2019; 51 (Epub 2019/05/03PubMed PMID: 31043754PubMed Central PMCID: PMC6904208): 768-769https://doi.org/10.1038/s41588-019-0404-0
        • Kupers LK
        • Monnereau C
        • Sharp GC
        • Yousefi P
        • Salas LA
        • Ghantous A
        • et al.
        Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight.
        Nat Commun. 2019; 10 (Epub 2019/04/25PubMed PMID: 31015461PubMed Central PMCID: PMC6478731): 1893https://doi.org/10.1038/s41467-019-09671-3
        • Hannon E
        • Schendel D
        • Ladd-Acosta C
        • Grove J
        • Hansen CS
        • Hougaard DM
        • et al.
        Variable DNA methylation in neonates mediates the association between prenatal smoking and birth weight.
        Philos Trans R Soc Lond B Biol Sci. 2019; 374 (Epub 2019/04/11PubMed PMID: 30966880PubMed Central PMCID: PMC6460077)20180120https://doi.org/10.1098/rstb.2018.0120
        • Proust C
        • Empana JP
        • Boutouyrie P
        • Alivon M
        • Challande P
        • Danchin N
        • et al.
        Contribution of Rare and Common Genetic Variants to Plasma Lipid Levels and Carotid Stiffness and Geometry: A Substudy of the Paris Prospective Study 3.
        Circ Cardiovasc Genet. 2015; 8 (Epub 2015/07/15PubMed PMID: 26160806): 628-636https://doi.org/10.1161/CIRCGENETICS.114.000979
        • Tang CS
        • Zhang H
        • Cheung CY
        • Xu M
        • Ho JC
        • Zhou W
        • et al.
        Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese.
        Nat Commun. 2015; 6 (Epub 2015/12/23PubMed PMID: 26690388PubMed Central PMCID: PMC4703860): 10206https://doi.org/10.1038/ncomms10206
        • Kim YJ
        • Go MJ
        • Hu C
        • Hong CB
        • Kim YK
        • Lee JY
        • et al.
        Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits.
        Nat Genet. 2011; 43 (Epub 2011/09/13PubMed PMID: 21909109): 990-995https://doi.org/10.1038/ng.939
        • Rasmussen-Torvik LJ
        • Pacheco JA
        • Wilke RA
        • Thompson WK
        • Ritchie MD
        • Kho AN
        • et al.
        High density GWAS for LDL cholesterol in African Americans using electronic medical records reveals a strong protective variant in APOE.
        Clin Transl Sci. 2012; 5 (Epub 2012/10/17PubMed PMID: 23067351PubMed Central PMCID: PMC3521536): 394-399https://doi.org/10.1111/j.1752-8062.2012.00446.x
        • Tabassum R
        • Ramo JT
        • Ripatti P
        • Koskela JT
        • Kurki M
        • Karjalainen J
        • et al.
        Genetic architecture of human plasma lipidome and its link to cardiovascular disease.
        Nat Commun. 2019; 10 (Epub 2019/09/26PubMed PMID: 31551469PubMed Central PMCID: PMC6760179): 4329https://doi.org/10.1038/s41467-019-11954-8
        • Andaleon A
        • Mogil LS
        • Wheeler HE.
        Gene-based association study for lipid traits in diverse cohorts implicates BACE1 and SIDT2 regulation in triglyceride levels.
        PeerJ. 2018; 6 (Epub 2018/02/07PubMed PMID: 29404214PubMed Central PMCID: PMC5793713): e4314https://doi.org/10.7717/peerj.4314
        • Oni-Orisan A
        • Haldar T
        • Ranatunga DK
        • Medina MW
        • Schaefer C
        • Krauss RM
        • et al.
        The impact of adjusting for baseline in pharmacogenomic genome-wide association studies of quantitative change.
        NPJ Genom Med. 2020; 5 (Epub 2020/01/24PubMed PMID: 31969989PubMed Central PMCID: PMC6965183): 1https://doi.org/10.1038/s41525-019-0109-4
        • Andaleon A
        • Mogil LS
        • Wheeler HE
        Genetically regulated gene expression underlies lipid traits in Hispanic cohorts.
        PLoS One. 2019; 14 (Epub 2019/08/09PubMed PMID: 31393916PubMed Central PMCID: PMC6687110)e0220827https://doi.org/10.1371/journal.pone.0220827
        • Cui M
        • Li W
        • Ma L
        • Ping F
        • Liu J
        • Wu X
        • et al.
        HDL-cholesterol concentration in pregnant Chinese Han women of late second trimester associated with genetic variants in CETP, ABCA1, APOC3, and GALNT2.
        Oncotarget. 2017; 8 (Epub 2017/09/17PubMed PMID: 28915626PubMed Central PMCID: PMC5593597): 56737-56746https://doi.org/10.18632/oncotarget.18128
        • Nie M
        • Wang Y
        • Li W
        • Ping F
        • Liu J
        • Wu X
        • et al.
        The association between six genetic variants and blood lipid levels in pregnant Chinese Han women.
        J Clin Lipidol. 2017; 11 (Epub 2017/07/02PubMed PMID: 28666712): 938-944https://doi.org/10.1016/j.jacl.2017.06.006
        • Marcel YL
        • Vezina C
        • Milne RW.
        Cholesteryl ester and apolipoprotein E transfer between human high density lipoproteins and chylomicrons.
        Biochim Biophys Acta. 1983; 750 (Epub 1983/02/07PubMed PMID: 6860692): 411-417https://doi.org/10.1016/0005-2760(83)90047-4
        • Krimbou L
        • Denis M
        • Haidar B
        • Carrier M
        • Marcil M
        • Genest Jr, J
        Molecular interactions between apoE and ABCA1: impact on apoE lipidation.
        J Lipid Res. 2004; 45 (Epub 2004/02/03PubMed PMID: 14754908): 839-848https://doi.org/10.1194/jlr.M300418-JLR200
        • Brooks-Wilson A
        • Marcil M
        • Clee SM
        • Zhang LH
        • Roomp K
        • van Dam M
        • et al.
        Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency.
        Nat Genet. 1999; 22 (Epub 1999/08/04PubMed PMID: 10431236): 336-345https://doi.org/10.1038/11905
        • Marcil M
        • Brooks-Wilson A
        • Clee SM
        • Roomp K
        • Zhang LH
        • Yu L
        • et al.
        Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux.
        Lancet. 1999; 354 (Epub 1999/10/26PubMed PMID: 10533863): 1341-1346https://doi.org/10.1016/s0140-6736(99)07026-9
        • Qiu X
        • Mistry A
        • Ammirati MJ
        • Chrunyk BA
        • Clark RW
        • Cong Y
        • et al.
        Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules.
        Nat Struct Mol Biol. 2007; 14 (Epub 2007/01/24PubMed PMID: 17237796): 106-113https://doi.org/10.1038/nsmb1197
        • Brown ML
        • Inazu A
        • Hesler CB
        • Agellon LB
        • Mann C
        • Whitlock ME
        • et al.
        Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins.
        Nature. 1989; 342 (Epub 1989/11/23PubMed PMID: 2586614): 448-451https://doi.org/10.1038/342448a0
        • Schadt EE
        • Molony C
        • Chudin E
        • Hao K
        • Yang X
        • Lum PY
        • et al.
        Mapping the genetic architecture of gene expression in human liver.
        PLoS Biol. 2008; 6 (Epub 2008/05/09PubMed PMID: 18462017PubMed Central PMCID: PMC2365981): e107https://doi.org/10.1371/journal.pbio.0060107
        • Kathiresan S
        • Melander O
        • Guiducci C
        • Surti A
        • Burtt NP
        • Rieder MJ
        • et al.
        Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans.
        Nat Genet. 2008; 40 (Epub 2008/01/15PubMed PMID: 18193044PubMed Central PMCID: PMC2682493): 189-197https://doi.org/10.1038/ng.75
        • Tan J
        • Che Y
        • Liu Y
        • Hu J
        • Wang W
        • Hu L
        • et al.
        CELSR2 deficiency suppresses lipid accumulation in hepatocyte by impairing the UPR and elevating ROS level.
        FASEB J. 2021; 35 (Epub 2021/09/04PubMed PMID: 34478580): e21908https://doi.org/10.1096/fj.202100786RR
        • Ghio A
        • Bertolotto A
        • Resi V
        • Volpe L
        • Di Cianni G.
        Chapter 7 - Triglyceride metabolism in pregnancy.
        in: Makowski GS Advances in Clinical Chemistry. 55. Elsevier, 2011: 133-153