Advertisement

Impact of the eicosapentaenoic acid to arachidonic acid ratio on plaque characteristics in statin-treated patients with coronary artery disease

Published:December 02, 2022DOI:https://doi.org/10.1016/j.jacl.2022.11.011

      Highlights

      • A low EPA/AA ratio is related to more vulnerable properties in nonculprit plaques.
      • The association is also demonstrated among patients with an LDL-C < 100mg/dL.
      • Low EPA/AA and high LDL-C levels are associated with more TCFA in nonculprit plaques.
      • Our results suggest the pathogenesis of recurrent events in cases of low EPA/AA.

      Abstract

      Background

      A low eicosapentaenoic acid (EPA)/arachidonic acid (AA) ratio is associated with an increased risk of cardiovascular events in patients with coronary artery disease (CAD).

      Objective

      To clarify the impact of the EPA/AA ratio on the characteristics of non-culprit coronary plaques in statin-treated patients with CAD.

      Methods

      A total of 370 consecutive stable coronary disease patients treated with statins, who underwent percutaneous coronary intervention for the culprit lesion and optical coherence tomography (OCT) imaging of the non-culprit plaque in a culprit vessel were included. The characteristics of non-culprit plaques assessed using OCT were compared between the lower EPA/AA group (EPA/AA <0.4, n = 255) and the higher EPA/AA group (EPA/AA ≥0.4, n = 115).

      Results

      The prevalence of lipid-rich plaque (58.8 vs. 41.7%, p = 0.003) and plaque with macrophages (56.5 vs. 31.3%, p <0.001) was significantly higher in the lower EPA/AA group than in the higher EPA/AA group. This association was observed even if the LDL-C level was <100 mg/dL. The prevalence of thin-cap fibroatheroma was significantly higher in patients with lower EPA/AA and higher LDL-C (≥100 mg/dL) than in those with higher EPA/AA and lower LDL-C (<100 mg/dL) (odds ratio: 2.750, 95% confidence interval: 1.182-6.988, p = 0.024). An EPA/AA <0.4 was independently associated with a higher prevalence of lipid-rich plaque, plaque with macrophages, and cholesterol crystals.

      Conclusion

      Lower EPA/AA ratio was associated with higher prevalence of vulnerable characteristics in non-culprit plaques. The present results suggest the importance of EPA/AA ratio on the secondary prevention of CAD.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Domei T
        • Yokoi H
        • Kuramitsu S
        • Soga Y
        • Arita T
        • Ando K
        • Shirai S
        • Kondo K
        • Sakai K
        • Goya M
        • Iwabuchi M
        • Ueeda M
        • Nobuyoshi M.
        Ratio of serum n-3 to n-6 polyunsaturated fatty acids and the incidence of major adverse cardiac events in patients undergoing percutaneous coronary intervention.
        Circ J. 2012; 76: 423-429https://doi.org/10.1253/circj.CJ-11-0941
        • Nishizaki Y
        • Shimada K
        • Tani S
        • Ogawa T
        • Ando J
        • Takahashi M
        • Yamamoto M
        • Shinozaki T
        • Miyauchi K
        • Nagao K
        • Hirayama A
        • Yoshimura M
        • Komuro I
        • Nagai R
        • Daida H.
        Significance of imbalance in the ratio of serum n-3 to n-6 polyunsaturated fatty acids in patients with acute coronary syndrome.
        Am J Cardiol. 2014; 113: 441-445https://doi.org/10.1016/j.amjcard.2013.10.011
        • Krämer HJ
        • Stevens J
        • Grimminger F
        • Seeger W.
        Fish oil fatty acids and human platelets: Dose-dependent decrease in dienoic and increase in trienoic thromboxane generation.
        Biochem Pharmacol. 1996; 52: 1211-1217https://doi.org/10.1016/0006-2952(96)00473-X
        • Satoh N
        • Shimatsu A
        • Kotani K
        • Sakane N
        • Yamada K
        • Suganami T
        • Kuzuya H
        • Ogawa Y.
        Purified eicosapentaenoic acid reduces small dense LDL, remnant lipoprotein particles, and C-reactive protein in metabolic syndrome.
        Diabetes Care. 2007; 30: 144-146https://doi.org/10.2337/dc06-1179
        • Thies F
        • Garry JMC
        • Yaqoob P
        • Rerkasem K
        • Williams J
        • Shearman CP
        • Gallagher PJ
        • Calder PC
        • Grimble RF.
        Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: A randomised controlled trial.
        Lancet. 2003; 361: 477-485https://doi.org/10.1016/S0140-6736(03)12468-3
        • Ferretti A
        • Nelson GJ
        • Schmidt PC
        • Kelley DS
        • Bartolini G
        • Flanagan VP.
        Increased dietary arachidonic acid enhances the synthesis of vasoactive eicosanoids in humans.
        Lipids. 1997; 32: 435-439https://doi.org/10.1007/s11745-997-0057-5
        • Dwyer JH
        • Allayee H
        • Dwyer KM
        • Fan J
        • Wu H
        • Mar R
        • Lusis AJ
        • Mehrabian M.
        Arachidonate 5-Lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis.
        N Engl J Med. 2004; 350: 29-37https://doi.org/10.1056/nejmoa025079
        • Wakabayashi Y
        • Funayama H
        • Ugata Y
        • Taniguchi Y
        • Hoshino H
        • Ako J
        • Momomura S.
        Low eicosapentaenoic acid to arachidonic acid ratio is associated with thin-cap fibroatheroma determined by optical coherence tomography.
        J Cardiol. 2015; 66: 482-488https://doi.org/10.1016/j.jjcc.2015.01.008
        • Hasegawa T
        • Otsuka K
        • Iguchi T
        • Matsumoto K
        • Ehara S
        • Nakata S
        • Nishimura S
        • Kataoka T
        • Shimada K
        • Yoshiyama M.
        Serum n-3 to n-6 polyunsaturated fatty acids ratio correlates with coronary plaque vulnerability: an optical coherence tomography study.
        Heart Vessels. 2014; 29: 596-602https://doi.org/10.1007/s00380-013-0404-4
        • Matsuzaki M
        • Yokoyama M
        • Saito Y
        • Origasa H
        • Ishikawa Y
        • Oikawa S
        • Sasaki J
        • Hishida H
        • Itakura H
        • Kita T
        • Kitabatake A
        • Nakaya N
        • Sakata T
        • Shimada K
        • Shirato K
        • Matsuzawa Y.
        Incremental effects of eicosapentaenoic acid on cardiovascular events in statin-treated patients with coronary artery disease - Secondary prevention analysis from JELIS.
        Circ J. 2009; 73: 1283-1290https://doi.org/10.1253/circj.CJ-08-1197
        • Matsumoto I
        • Moriya S
        • Kurozumi M
        • Namba T
        • Takagi Y.
        Simultaneous evaluation of fatty acid and triglycerides after percutaneous coronary intervention.
        J Cardiol. 2022; 80: 149-154https://doi.org/10.1016/j.jjcc.2022.02.011
        • Usui E
        • Mintz GS
        • Lee T
        • Matsumura M
        • Zhang Y
        • Hada M
        • Yamaguchi M
        • Hoshino M
        • Kanaji Y
        • Sugiyama T
        • Murai T
        • Yonetsu T
        • Kakuta T
        • Maehara A.
        Prognostic impact of healed coronary plaque in non-culprit lesions assessed by optical coherence tomography.
        Atherosclerosis. 2020; 309: 1-7https://doi.org/10.1016/j.atherosclerosis.2020.07.005
        • Araki M
        • Park SJ
        • Dauerman HL
        • Uemura S
        • Kim JS
        • C Di Mario
        • Johnson TW
        • Guagliumi G
        • Kastrati A
        • Joner M
        • Holm NR
        • Alfonso F
        • Wijns W
        • Adriaenssens T
        • Nef H
        • Rioufol G
        • Amabile N
        • Souteyrand G
        • Meneveau N
        • Gerbaud E
        • Opolski MP
        • Gonzalo N
        • Tearney GJ
        • Bouma B
        • Aguirre AD
        • Mintz GS
        • Stone GW
        • Bourantas CV
        • Räber L
        • Gili S
        • Mizuno K
        • Kimura S
        • Shinke T
        • Hong MK
        • Jang Y
        • Cho JM
        • Yan BP
        • Porto I
        • Niccoli G
        • Montone RA
        • Thondapu V
        • Papafaklis MI
        • Michalis LK
        • Reynolds H
        • Saw J
        • Libby P
        • Weisz G
        • Iannaccone M
        • Gori T
        • Toutouzas K
        • Yonetsu T
        • Minami Y
        • Takano M
        • Raffel OC
        • Kurihara O
        • Soeda T
        • Sugiyama T
        • Kim HO
        • Lee T
        • Higuma T
        • Nakajima A
        • Yamamoto E
        • Bryniarski KL
        • L Di Vito
        • Vergallo R
        • Fracassi F
        • Russo M
        • Seegers LM
        • McNulty I
        • Park S
        • Feldman M
        • Escaned J
        • Prati F
        • Arbustini E
        • Pinto FJ
        • Waksman R
        • Garcia-Garcia HM
        • Maehara A
        • Ali Z
        • Finn AV
        • Virmani R
        • Kini AS
        • Daemen J
        • Kume T
        • Hibi K
        • Tanaka A
        • Akasaka T
        • Kubo T
        • Yasuda S
        • Croce K
        • Granada JF
        • Lerman A
        • Prasad A
        • Regar E
        • Saito Y
        • Sankardas MA
        • Subban V
        • Weissman NJ
        • Chen Y
        • Yu B
        • Nicholls SJ
        • Barlis P
        • West NEJ
        • Arbab-Zadeh A
        • Ye JC
        • Dijkstra J
        • Lee H
        • Narula J
        • Crea F
        • Nakamura S
        • Kakuta T
        • Fujimoto J
        • Fuster V
        • Jang IK
        Optical coherence tomography in coronary atherosclerosis assessment and intervention.
        Nat Rev Cardiol. 2022; (Published online): 1-2https://doi.org/10.1038/s41569-022-00687-9
        • Tearney GJ
        • Regar E
        • Akasaka T
        • Adriaenssens T
        • Barlis P
        • Bezerra HG
        • Bouma B
        • Bruining N
        • Cho JM
        • Chowdhary S
        • Costa MA
        • De Silva R
        • Dijkstra J
        • Di Mario C
        • Dudeck D
        • Falk E
        • Feldman MD
        • Fitzgerald P
        • Garcia H
        • Gonzalo N
        • Granada JF
        • Guagliumi G
        • Holm NR
        • Honda Y
        • Ikeno F
        • Kawasaki M
        • Kochman J
        • Koltowski L
        • Kubo T
        • Kume T
        • Kyono H
        • Lam CCS
        • Lamouche G
        • Lee DP
        • Leon MB
        • Maehara A
        • Manfrini O
        • Mintz GS
        • Mizuno K
        • Morel MA
        • Nadkarni S
        • Okura H
        • Otake H
        • Pietrasik A
        • Prati F
        • Rber L
        • Radu MD
        • Rieber J
        • Riga M
        • Rollins A
        • Rosenberg M
        • Sirbu V
        • Serruys PWJC
        • Shimada K
        • Shinke T
        • Shite J
        • Siegel E
        • Sonada S
        • Suter M
        • Takarada S
        • Tanaka A
        • Terashima M
        • Troels T
        • Uemura S
        • Ughi GJ
        • Van Beusekom HMM
        • Van Der Steen AFW
        • Van Es GA
        • Van Soest G
        • Virmani R
        • Waxman S
        • Weissman NJ
        • Weisz G.
        Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: A report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation.
        J Am Coll Cardiol. 2012; 59: 1058-1072https://doi.org/10.1016/j.jacc.2011.09.079
        • Yamamoto MH
        • Yamashita K
        • Matsumura M
        • Fujino A
        • Ishida M
        • Ebara S
        • Okabe T
        • Saito S
        • Hoshimoto K
        • Amemiya K
        • Yakushiji T
        • Isomura N
        • Araki H
        • Obara C
        • McAndrew T
        • Ochiai M
        • Mintz GS
        • Maehara A.
        Serial 3-vessel optical coherence tomography and intravascular ultrasound analysis of changing morphologies associated with lesion progression in patients with stable angina pectoris.
        Circ Cardiovasc Imaging. 2017; 10: 1-9https://doi.org/10.1161/CIRCIMAGING.117.006347
        • Kitabata H
        • Tanaka A
        • Kubo T
        • Takarada S
        • Kashiwagi M
        • Tsujioka H
        • Ikejima H
        • Kuroi A
        • Kataiwa H
        • Ishibashi K
        • Komukai K
        • Tanimoto T
        • Ino Y
        • Hirata K
        • Nakamura N
        • Mizukoshi M
        • Imanishi T
        • Akasaka T.
        Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease.
        Am J Cardiol. 2010; 105: 1673-1678https://doi.org/10.1016/j.amjcard.2010.01.346
        • Liu L
        • Gardecki JA
        • Nadkarni SK
        • Toussaint JD
        • Yagi Y
        • Bouma BE
        • Tearney GJ.
        Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography.
        Nat Med. 2011; 17: 1010-1014https://doi.org/10.1038/nm.2409
        • Yamagishi M
        • Tamaki N
        • Akasaka T
        • Ikeda T
        • Ueshima K
        • Uemura S
        • Otsuji Y
        • Kihara Y
        • Kimura K
        • Kimura T
        • Kusama Y
        • Kumita S
        • Sakuma H
        • Jinzaki M
        • Daida H
        • Takeishi Y
        • Tada H
        • Chikamori T
        • Tsujita K
        • Teraoka K
        • Nakajima K
        • Nakata T
        • Nakatani S
        • Nogami A
        • Node K
        • Nohara A
        • Hirayama A
        • Funabashi N
        • Miura M
        • Mochizuki T
        • Yokoi H
        • Yoshioka K
        • Watanabe M
        • Asanuma T
        • Ishikawa Y
        • Ohara T
        • Kaikita K
        • Kasai T
        • Kato E
        • Kamiyama H
        • Kawashiri M
        • Kiso K
        • Kitagawa K
        • Kido T
        • Kinoshita T
        • Kiriyama T
        • Kume T
        • Kurata A
        • Kurisu S
        • Kosuge M
        • Kodani E
        • Sato A
        • Shiono Y
        • Shiomi H
        • Taki J
        • Takeuchi M
        • Tanaka A
        • Tanaka N
        • Tanaka R
        • Nakahashi T
        • Nakahara T
        • Nomura A
        • Hashimoto A
        • Hayashi K
        • Higashi M
        • Hiro T
        • Fukamachi D
        • Matsuo H
        • Matsumoto N
        • Miyauchi K
        • Miyagawa M
        • Yamada Y
        • Yoshinaga K
        • Wada H
        • Watanabe T
        • Ozaki Y
        • Kohsaka S
        • Shimizu W
        • Yasuda S
        • Yoshino H.
        JCS 2018 guideline on diagnosis of chronic coronary heart diseases.
        Circ J. 2021; 85: 402-572https://doi.org/10.1253/CIRCJ.CJ-19-1131
        • Fujiyoshi K
        • Minami Y
        • Ishida K
        • Kato A
        • Katsura A
        • Muramatsu Y
        • Sato T
        • Kakizaki R
        • Nemoto T
        • Hashimoto T
        • Sato N
        • Meguro K
        • Shimohama T
        • Tojo T
        • Ako J.
        Incidence, factors, and clinical significance of cholesterol crystals in coronary plaque: An optical coherence tomography study.
        Atherosclerosis. 2019; 283: 79-84https://doi.org/10.1016/j.atherosclerosis.2019.02.009
        • Watanabe T
        • Ando K
        • Daidoji H
        • Otaki Y
        • Sugawara S
        • Matsui M
        • Ikeno E
        • Hirono O
        • Miyawaki H
        • Yashiro Y
        • Nishiyama S
        • Arimoto T
        • Takahashi H
        • Shishido T
        • Miyashita T
        • Miyamoto T
        • Kubota I.
        A randomized controlled trial of eicosapentaenoic acid in patients with coronary heart disease on statins.
        J Cardiol. 2017; 70: 537-544https://doi.org/10.1016/j.jjcc.2017.07.007
        • Yamano T
        • Kubo T
        • Shiono Y
        • Shimamura K
        • Orii M
        • Tanimoto T
        • Matsuo Y
        • Ino Y
        • Kitabata H
        • Yamaguchi T
        • Hirata K
        • Tanaka A
        • Imanishi T
        • Akasaka T.
        Impact of eicosapentaenoic acid treatment on the fibrous cap thickness in patients with coronary atherosclerotic plaque: An optical coherence tomography study.
        J Atheroscler Thromb. 2015; 22: 52-61https://doi.org/10.5551/jat.25593
      1. Coenzyme A, Acyltransferase AC, Reza JZ, Doosti M, Salehipour M, Packnejad M, Mojarrad M, Heidari M, Emamian ES. Modulation peroxisome proliferators activated receptor alpha (ACAT1) gene expression by fatty acids in foam cell. 2009;7:1-7. doi:10.1186/1476-511X-8-38

        • Lamon-Fava S
        • So J
        • Mischoulon D
        • Ziegler TR
        • Dunlop BW
        • Kinkead B
        • Schettler PJ
        • Nierenberg AA
        • Felger JC
        • Maddipati KR
        • Fava M
        • Rapaport MH.
        Dose- and time-dependent increase in circulating anti-inflammatory and pro-resolving lipid mediators following eicosapentaenoic acid supplementation in patients with major depressive disorder and chronic inflammation.
        Prostaglandins Leukot Essent Fat Acids. 2021; 164102219https://doi.org/10.1016/j.plefa.2020.102219
        • Sugizaki Y
        • Otake H
        • Kuroda K
        • Kawamori H
        • Toba T
        • Nagasawa A
        • Takeshige R
        • Nakano S
        • Matsuoka Y
        • Tanimura K
        • Takahashi Y
        • Fukuyama Y
        • Hirata K.
        Concomitant use of rosuvastatin and eicosapentaenoic acid significantly prevents native coronary atherosclerotic progression in patients with in-stent neoatherosclerosis.
        Circ J. 2020; 84: 1826-1836https://doi.org/10.1253/circj.CJ-20-0199
        • Matsumoto M
        • Sata M
        • Fukuda D
        • Tanaka K
        • Soma M
        • Hirata Y
        • Nagai R.
        Orally administered eicosapentaenoic acid reduces and stabilizes atherosclerotic lesions in ApoE-deficient mice.
        Atherosclerosis. 2008; 197: 524-533https://doi.org/10.1016/j.atherosclerosis.2007.07.023
        • Gong Y
        • Hart E
        • Shchurin A
        • Hoover-Plow J.
        Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice.
        J Clin Invest. 2008; 118: 3012-3024https://doi.org/10.1172/JCI32750
        • Kellner-Weibel G
        • Jerome WG
        • Small DM
        • Warner GJ
        • Stoltenborg JK
        • Kearney MA
        • Corjay MH
        • Phillips MC
        • Rothblat GH.
        Effects of intracellular free cholesterol accumulation on macrophage viability: A model for foam cell death.
        Arterioscler Thromb Vasc Biol. 1998; 18: 423-431https://doi.org/10.1161/01.ATV.18.3.423
        • Erlinge D
        • Maehara A
        • Ben-Yehuda O
        • Bøtker HE
        • Maeng M
        • Kjøller-Hansen L
        • Engstrøm T
        • Matsumura M
        • Crowley A
        • Dressler O
        • Mintz GS
        • Fröbert O
        • Persson J
        • Wiseth R
        • Larsen AI
        • Okkels Jensen L
        • Nordrehaug JE
        • Bleie Ø
        • Omerovic E
        • Held C
        • James SK
        • Ali ZA
        • Muller JE
        • Stone GW
        • Ahlehoff O
        • Amin A
        • Angerås O
        • Appikonda P
        • Balachandran S
        • Barvik S
        • Bendix K
        • Bertilsson M
        • Boden U
        • Bogale N
        • Bonarjee V
        • Calais F
        • Carlsson J
        • Carstensen S
        • Christersson C
        • Christiansen EH
        • Corral M
        • De Backer O
        • Dhaha U
        • Dworeck C
        • Eggers K
        • Elfström C
        • Ellert J
        • Eriksen E
        • Fallesen C
        • Forsman M
        • Fransson H
        • Gaballa M
        • Gacki M
        • Götberg M
        • Hagström L
        • Hallberg T
        • Hambraeus K
        • Haraldsson I
        • Harnek J
        • Havndrup O
        • Hegbom K
        • Heigert M
        • Helqvist S
        • Herstad J
        • Hijazi Z
        • Holmvang L
        • Ioanes D
        • Iqbal A
        • Iversen A
        • Jacobson J
        • Jakobsen L
        • Jankovic I
        • Jensen U
        • Jensevik K
        • Johnston N
        • Jonasson TF
        • Jørgensen E
        • Joshi F
        • Kajermo U
        • Kåver F
        • Kelbæk H
        • Kellerth T
        • Kish M
        • Koenig W
        • Koul S
        • Lagerqvist B
        • Larsson B
        • Lassen JF
        • Leiren O
        • Li Z
        • Lidell C
        • Linder R
        • Lindstaedt M
        • Lindström G
        • Liu S
        • Løland KH
        • Lønborg J
        • Márton L
        • Mir-Akbari H
        • Mohamed S
        • Odenstedt J
        • Ogne C
        • Oldgren J
        • Olivecrona G
        • Östlund-Papadogeorgos N
        • Ottesen M
        • Packer E
        • Palmquist ÅM
        • Paracha Q
        • Pedersen F
        • Petursson P
        • Råmunddal T
        • Rotevatn S
        • Sanchez R
        • Sarno G
        • Saunamäki KI
        • Scherstén F
        • Serruys PW
        • Sjögren I
        • Sørensen R
        • Srdanovic I
        • Subhani Z
        • Svensson E
        • Thuesen A
        • Tijssen J
        • Tilsted HH
        • Tödt T
        • Trovik T
        • Våga BI
        • Varenhorst C
        • Veien K
        • Vestman E
        • Völz S
        • Wallentin L
        • Wykrzykowska J
        • Zagozdzon L
        • Zamfir M
        • Zedigh C
        • Zhong H
        • Zhou Z
        Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): a prospective natural history study.
        Lancet. 2021; 397: 985-995https://doi.org/10.1016/S0140-6736(21)00249-X
        • Yokoyama M
        • Origasa H
        • Matsuzaki M
        • Matsuzawa Y
        • Saito Y
        • Ishikawa Y
        • Oikawa S
        • Sasaki J
        • Hishida H
        • Itakura H
        • Kita T
        • Kitabatake A
        • Nakaya N
        • Sakata T
        • Shimada K
        • Shirato K.
        Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.
        Lancet. 2007; 369: 1090-1098https://doi.org/10.1016/S0140-6736(07)60527-3
        • Bhatt DL
        • Steg PG
        • Miller M
        • Brinton EA
        • Jacobson TA
        • Ketchum SB
        • Doyle RT
        • Juliano RA
        • Jiao L
        • Granowitz C
        • Tardif JC
        Ballantyne CM. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia.
        N Engl J Med. 2019; 380: 11-22https://doi.org/10.1056/nejmoa1812792