Advertisement
Research Article| Volume 17, ISSUE 2, P272-280, March 2023

Role of lipoprotein lipase activity measurement in the diagnosis of familial chylomicronemia syndrome

  • José Rioja
    Affiliations
    Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain (Drs Rioja, Ariza, Sánchez-Chaparro and Valdivielso)
    Search for articles by this author
  • María José Ariza
    Correspondence
    Corresponding author.
    Affiliations
    Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain (Drs Rioja, Ariza, Sánchez-Chaparro and Valdivielso)
    Search for articles by this author
  • María José Benítez-Toledo
    Affiliations
    Lipid Unit, University Hospital Virgen de la Victoria, Málaga, Spain (Drs Benítez-Toledo, Espíldora-Hernández, Coca-Prieto, Sánchez-Chaparro and Valdivielso)
    Search for articles by this author
  • Javier Espíldora-Hernández
    Affiliations
    Lipid Unit, University Hospital Virgen de la Victoria, Málaga, Spain (Drs Benítez-Toledo, Espíldora-Hernández, Coca-Prieto, Sánchez-Chaparro and Valdivielso)
    Search for articles by this author
  • Inmaculada Coca-Prieto
    Affiliations
    Lipid Unit, University Hospital Virgen de la Victoria, Málaga, Spain (Drs Benítez-Toledo, Espíldora-Hernández, Coca-Prieto, Sánchez-Chaparro and Valdivielso)
    Search for articles by this author
  • Teresa Arrobas-Velilla
    Affiliations
    Clinical Chemistry Unit, Virgen Macarena Hospital, Sevilla, Spain (Dr Arrobas-Velilla)
    Search for articles by this author
  • Ana Camacho
    Affiliations
    Unidad de Riesgo Vascular. Hospital Infanta Elena, Huelva, Spain (Dr Camacho)
    Search for articles by this author
  • Gunilla Olivecrona
    Affiliations
    Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden (Dr Olivecrona)
    Search for articles by this author
  • Author Footnotes
    1 Contributed equally to the paper.
    Miguel Ángel Sánchez-Chaparro
    Footnotes
    1 Contributed equally to the paper.
    Affiliations
    Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain (Drs Rioja, Ariza, Sánchez-Chaparro and Valdivielso)

    Lipid Unit, University Hospital Virgen de la Victoria, Málaga, Spain (Drs Benítez-Toledo, Espíldora-Hernández, Coca-Prieto, Sánchez-Chaparro and Valdivielso)
    Search for articles by this author
  • Author Footnotes
    1 Contributed equally to the paper.
    Pedro Valdivielso
    Footnotes
    1 Contributed equally to the paper.
    Affiliations
    Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain (Drs Rioja, Ariza, Sánchez-Chaparro and Valdivielso)

    Lipid Unit, University Hospital Virgen de la Victoria, Málaga, Spain (Drs Benítez-Toledo, Espíldora-Hernández, Coca-Prieto, Sánchez-Chaparro and Valdivielso)
    Search for articles by this author
  • Author Footnotes
    1 Contributed equally to the paper.
Published:January 25, 2023DOI:https://doi.org/10.1016/j.jacl.2023.01.005

      Highlights

      • FCS is a rare genetic disorder that results in LPL activity deficiency.
      • The LPL activity method is not standardised.
      • Cut-off points to consider LPL activity deficiency must be stablished.
      • A cut-off value of 25 % of the mean LPL activity of a MCS cohort has been defined.
      • A comprehensive workflow for FCS diagnosis is provided in this study.

      Background

      Activity assays for lipoprotein lipase (LPL) are not standardised for use in clinical settings. Objective: This study sought to define and validate a cut-off points based on a ROC curve for the diagnosis of patients with familial chylomicronemia syndrome (FCS). We also evaluated the role of LPL activity in a comprehensive FCS diagnostic workflow.

      Methods

      A derivation cohort (including an FCS group (n = 9), a multifactorial chylomicronemia syndrome (MCS) group (n = 11)), and an external validation cohort (including an FCS group (n = 5), a MCS group (n = 23) and a normo-triglyceridemic (NTG) group (n = 14)), were studied. FCS patients were previously diagnosed by the presence of biallelic pathogenic genetic variants in the LPL and GPIHBP1 genes. LPL activity was also measured. Clinical and anthropometric data were recorded, and serum lipids and lipoproteins were measured. Sensitivity, specificity and cut-offs for LPL activity were obtained from a ROC curve and externally validated.

      Results

      All post-heparin plasma LPL activity in the FCS patients were below 25.1 mU/mL, that was cut-off with best performance. There was no overlap in the LPL activity distributions between the FCS and MCS groups, conversely to the FCS and NTG groups.

      Conclusion

      We conclude that, in addition to genetic testing, LPL activity in subjects with severe hypertriglyceridemia is a reliable criterium in the diagnosis of FCS when using a cut-off of 25.1 mU/mL (25% of the mean LPL activity in the validation MCS group). We do not recommend the NTG patient based cut-off values due to low sensitivity.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Clinical Lipidology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Paquette M
        • Bernard S
        • Hegele RA
        • Chylomicronemia Baass A.
        Differences between familial chylomicronemia syndrome and multifactorial chylomicronemia.
        Atherosclerosis. 2019; 283 (November 2018): 137-142https://doi.org/10.1016/j.atherosclerosis.2018.12.019
        • Santamarina-Fojo S.
        The familial chylomicronemia syndrome.
        Endocrinol Metab Clin North Am. 1998; 27: 551-567https://doi.org/10.1016/S0889-8529(05)70025-6
        • Ameis D
        • Kobayashi J
        • Davis RC
        • et al.
        Familial Chylomicronemia (Type I Hyperlipoproteinemia) Due to a Single Missense Mutation in the Lipoprotein Lipase Gene.
        1991 (Vol 87)
        • Baass A
        • Paquette M
        • Bernard S
        • Hegele RA.
        Familial chylomicronemia syndrome: an under-recognized cause of severe hypertriglyceridaemia.
        J Intern Med. 2020; 287: 340-348https://doi.org/10.1111/joim.13016
        • Hegele RA
        • Dron JS.
        Arteriosclerosis, thrombosis, and vascular biology ATVB NAMED LECTURE REVIEW 2019 george lyman duff memorial lecture three decades of examining DNA in patients with dyslipidemia.
        Arterioscler Thromb Vasc Biol. 2020; 40: 1970-1981https://doi.org/10.1161/ATVBAHA.120.313065
        • Holm C
        • Olivecrona G
        • Ottosson M.
        Assays of Lipolytic Enzymes.
        2001https://doi.org/10.1385/1592592317 (Vol 155)
        • van Hoek M
        • Dallinga-Thie GM
        • Steyerberg EW
        • Sijbrands EJGG.
        Diagnostic value of post-heparin lipase testing in detecting common genetic variants in the LPL and LIPC genes.
        Eur J Human Gen. 2009; 17: 1386-1393https://doi.org/10.1038/ejhg.2009.61
        • Blom DJ
        • O'Dea L
        • Digenio A
        • et al.
        Characterizing familial chylomicronemia syndrome: Baseline data of the APPROACH study.
        J Clin Lipidol. 2018; 12 (.e5): 1234-1243https://doi.org/10.1016/j.jacl.2018.05.013
        • Okazaki H
        • Gotoda T
        • Ogura M
        • et al.
        Current diagnosis and management of primary chylomicronemia.
        J Atheroscler Thromb. 2021; 28: 1-22https://doi.org/10.5551/jat.RV17054
        • Ariza MJ
        • Rioja J
        • Ibarretxe D
        • et al.
        Molecular basis of the familial chylomicronemia syndrome in patients from the national dyslipidemia registry of the spanish atherosclerosis society.
        J Clin Lipidol. August 2018; https://doi.org/10.1016/j.jacl.2018.07.013
      1. Protocolo farmacoclínico del uso de volanesorsén en el tratamiento del síndrome de quilomicronemia familiar en el sistema nacional de salud. 2022.

        • Mostaza JM
        • Pintó X
        • Armario P
        • et al.
        Standards for global cardiovascular risk management arteriosclerosis.
        Clinica e Investigacion en Arteriosclerosis. 2019; 31: 1-43https://doi.org/10.1016/j.arteri.2019.03.004
        • Coca-Prieto I
        • Valdivielso P
        • Olivecrona G
        • et al.
        Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis.
        BMC Gastroenterol. 2009; 9: 1-10https://doi.org/10.1186/1471-230X-9-46
        • Ariza MJ
        • Rioja Villodres J
        • Ibarretxe D
        • et al.
        Molecular basis of the familial chylomicronemia syndrome in patients from the national dyslipidemia registry of the spanish atherosclerosis society.
        J Clin Lipidol. 2018; 12 (e3): 1482-1492https://doi.org/10.1016/j.jacl.2018.07.013
        • Rioja J
        • Ariza MJ
        • García-Casares N
        • et al.
        Evaluation of the chylomicron-TG to VLDL-TG ratio for type I hyperlipoproteinemia diagnostic.
        Eur J Clin Invest. 2020; (June): 1-9https://doi.org/10.1111/eci.13345
        • Druml W
        • Zechner R
        • Magometschnigg D
        • et al.
        Post-heparin lipolytic activity in acute renal failure.
        Clin Nephrol. 1985; 23: 289-293
        • Tornvall P
        • Olivecrona G
        • Karpe F
        • Hamsten A
        • Olivecrona T.
        Lipoprotein lipase mass and activity in plasma and their increase after heparin are separate parameters with different relations to plasma lipoproteins.
        Arteriosclerosis, Thrombosis, Vascular Biol. 1995; 15: 1086-1093https://doi.org/10.1161/01.ATV.15.8.1086
      2. Dean AG, Sullivan KM, Soe MM, Mir RA, Kulkarni H. Openepi Web Page.

        • Di Filippo M
        • Marçais C
        • Charrière S
        • et al.
        Post-heparin LPL activity measurement using VLDL as a substrate: a new robust method for routine assessment of plasma triglyceride lipolysis defects.
        PLoS One. 2014; 9https://doi.org/10.1371/journal.pone.0096482
        • Basu D
        • Manjur J
        • Jin W
        Determination of lipoprotein lipase activity using a novel fluorescent lipase assay.
        J Lipid Res. 2011; 52: 826-832https://doi.org/10.1194/jlr.D010744
        • Moulin P
        • Dufour R
        • Averna M
        • et al.
        Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): expert panel recommendations and proposal of an “FCS score.
        Atherosclerosis. 2018; 275: 265-272https://doi.org/10.1016/j.atherosclerosis.2018.06.814
        • Ruppert PMM
        • Michielsen CCJR
        • Hazebroek EJ
        • et al.
        Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue.
        Molecular Metabolism. 2020; 40101033https://doi.org/10.1016/j.molmet.2020.101033
        • Kersten S.
        Physiological regulation of lipoprotein lipase.
        Biochimica et Biophysica Acta - Mol Cell Biol Lipids. 2014; 1841: 919-933https://doi.org/10.1016/j.bbalip.2014.03.013
        • Dron JS
        • Wang J
        • Cao H
        • et al.
        Severe hypertriglyceridemia is primarily polygenic.
        J Clin Lipidol. 2019; 13: 80-88https://doi.org/10.1016/j.jacl.2018.10.006
        • Brunzell JD
        • Bierman EL
        Chylomicronemia Syndrome. 1982; 66: 1982
        • Stroes E
        • Moulin P
        • Parhofer KG
        • Rebours V
        • Löhr JM
        • Averna M.
        Diagnostic algorithm for familial chylomicronemia syndrome.
        Atheroscler Suppl. 2017; 23: 1-7https://doi.org/10.1016/j.atherosclerosissup.2016.10.002
        • Sniderman A
        • Couture P
        • De Graaf J.
        Diagnosis and treatment of apolipoprotein B dyslipoproteinemias.
        Nat Rev Endocrinol. 2010; https://doi.org/10.1038/nrendo.2010.50
        • Lilley JS
        • Linton MF
        • Kelley JC
        • Graham TB
        • Fazio S
        • Tavori H.
        A case of severe acquired hypertriglyceridemia in a 7-year-old girl.
        J Clin Lipidol. 2017; 11: 1480-1484https://doi.org/10.1016/j.jacl.2017.08.003
        • Hu X
        • GM D-T
        • GK H
        • et al.
        GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia.
        J Clin Lipidol. 2017; 11: 964-971
        • Hegele RA
        • Berberich AJ
        • Ban MR
        • et al.
        Clinical and biochemical features of different molecular etiologies of familial chylomicronemia.
        J Clin Lipidol. 2018; 12: 920-927https://doi.org/10.1016/j.jacl.2018.03.093
        • Chen YQ
        • Pottanat TG
        • Zhen EY
        • et al.
        ApoA5 lowers triglyceride levels via suppression of ANGPTL3/8-mediated LPL inhibition.
        J Lipid Res. 2021; 62100068https://doi.org/10.1016/J.JLR.2021.100068
        • Oliva CP
        • Pisciotta L
        • Li Volti G
        • et al.
        Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia.
        Arterioscler Thromb Vasc Biol. 2005; 25: 411-417https://doi.org/10.1161/01.ATV.0000153087.36428.dd